The Prediction Research of Response Rate in Social Q&A Communities: A Case Study of Baidu Knows

  • Deng Shengli ,
  • Fu Shaoxiong ,
  • Liu Jin
Expand
  • Center for Studies of Information Resources, Wuhan University, Wuhan 430072

Received date: 2018-11-02

  Revised date: 2019-01-21

  Online published: 2019-05-20

Abstract

[Purpose/significance] Based on the current situation of low response rate of social Q&A communities, the research can provide references for social Q&A communities to improve user activation, retention rate and user experience by predicting the response rate of questions.[Method/process] The paper took "Baidu Know" as the research platform, and grabbed 10 640 question records under 14 topics set by the platform. From the perspective of question and questioner characteristics, the paper constructed the research framework of the factors affecting the question response rate. The binary logistic regression was used to verify the influencing factors, and then the prediction model of the question response rate was constructed.[Result/conclusion] The prediction research of response rate in social Q&A communities can improve the quality of platform information services and promote user knowledge contribution behavior. The experimental results have verified the validity of the model in the prediction of question response rate of the social Q&A communities.

Cite this article

Deng Shengli , Fu Shaoxiong , Liu Jin . The Prediction Research of Response Rate in Social Q&A Communities: A Case Study of Baidu Knows[J]. Library and Information Service, 2019 , 63(10) : 97 -105 . DOI: 10.13266/j.issn.0252-3116.2019.10.011

References

[1] 付少雄, 陈晓宇, 邓胜利. 社会化问答社区用户信息行为的转化研究——从信息采纳到持续性信息搜寻的理论模型构建[J]. 图书情报知识, 2017(4):80-88.
[2] 陈晓宇, 付少雄, 邓胜利. 社会化问答用户信息搜寻的影响因素研究——一种混合方法的视角[J]. 图书情报工作, 2018, 62(20):102-111.
[3] ADAMIC L A, ZHANG J, BAKSHY E, et al. Knowledge sharing and yahoo answers:everyone knows something[C]//Proceedings of the 17th international conference on world wide web. New York:ACM, 2008:665-674.
[4] RAFAELI S, RABAN D, RAVID G. How social motivation enhances economic activity and incentives in the google answers knowledge sharing market[J]. Social science electronic publishing, 2007, 3(1):1-11.
[5] CHOI E, KITZIE V, SHAH C. "10 Points for the best answer!"-baiting for explicating knowledge contributions within online Q&A[C]//Proceedings of the 76th ASIS&T annual meeting:beyond the cloud:rethinking information boundaries. Montreal:Wiley, 2013:103-106.
[6] 徐鹏, 张聃. 网络问答社区知识分享动机探究——社会交换论的视角[J]. 图书情报知识, 2018(2):105-112.
[7] 陈星, 张星, 曾淑云. 健康问答平台中知识分享意愿的影响因素研究[J]. 现代情报, 2017, 37(4):62-71.
[8] OH Sanghee. The characteristics and motivations of health answerers for sharing information, knowledge, and experiences in online environments[J]. Journal of the Association for Information Science & Technology, 2012, 63(3):543-557.
[9] DEARMAN D, TRUONG K N. Why users of Yahoo! answers do not answer questions[C]//Proceedings of the 2010 SIGCHI conference on human factors in computing systems. New York:ACM, 2010:329-332.
[10] NAM K K, ACKERMAN M S, ADAMIC L A. Questions in, knowledge in:a study of naver's question answering community[C]//Proceedings of the 2009 international conference on human factors in computing systems. New York:ACM, 2009:779-788.
[11] DU Qing. A relationship-based social question and answer system in social network[J]. Journal of information & computational science, 2015, 12(10):3783-3798.
[12] 徐安滢, 吉宗诚, 王斌. 基于用户回答顺序的平台问答答案质量预测研究[J]. 中文信息学报, 2017, 31(2):132-138.
[13] JEON J, CROFT W B, LEE J H, et al. A framework to predict the quality of answers with non-textual features[C]//Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2006:228-235.
[14] 田磊, 任国恒, 王伟. 面向阅读推广的微博用户转发行为预测[J]. 情报学报, 2017(11):1175-1182.
[15] 张鹏翼, 王丹雪, 焦祎凡,等. 基于用户浏览日志的移动购买预测研究[J]. 数据分析与知识发现, 2018, 2(1):51-63.
[16] 张红丽, 刘济郢, 杨斯楠,等. 基于网络用户评论的评分预测模型研究[J]. 现代图书情报技术, 2017, 1(8):48-58.
[17] 邓胜利, 付少雄. 网络谣言特征分析与预测模型设计:基于用户信任视角[J]. 情报科学, 2017(11):8-12.
[18] 陈君, 何梦婷. 基于动机视角的虚拟社区即时/持续网络口碑传播研究[J]. 情报科学, 2017(11):126-131.
[19] 陈姝, 窦永香, 张青杰. 基于理性行为理论的微博用户转发行为 影响因素研究[J]. 情报杂志, 2017, 36(11):147-152.
[20] 安璐, 易兴悦, 余传明,等. 突发公共卫生事件微博影响力的预测研究[J]. 情报理论与实践, 2017, 40(8):76-81.
[21] 王林森, 王学义. 微博内向型传导热点发现与预测算法研究[J]. 图书情报工作, 2018,62(3):71-77.
[22] 胡悦, 王亚民. 基于模糊神经网络的微博舆情趋势预测方法[J]. 情报科学, 2017, 35(12):28-33.
[23] AGICHTEIN E, CASTILLO C, DONATO D. Finding high-quality content in social media[C]//Proceedings of the 2008 international conference on web search and data mining. New York:ACM, 2008:183-194.
[24] FLEISCHMANN M, BLOEMHOF-RUWAARD J M, DEKKERB R, et al. Quantitative models for reverse logistics:a review[J]. European journal of operational research, 1997, 103(1):1-17.
[25] MCMILLAN S J. Effects of Structural and perceptual factors on attitude toward the website[J]. Journal of advertising research, 2004, 43(4):400-421.
[26] TIAN Q, ZHANG P, LI B. Towards predicting the best answers in community-based question-answering services[C]//Proceedings of the seventh international AAAI conference on weblogs and social media. Palo Alto:AAAI Press, 2013:725-728.
[27] 百度知道. 财富值[EB/OL].[2018-07-30]. http://help.baidu.com/question?prod_id=9&class=338&id=1506.
[28] HOMANS G C. Social behavior as exchange[J]. American journal of sociology, 1958, 63(6):597-606.
[29] HSIEH G, KRAUT R E, HUDSON S E. Why pay?:exploring how financial incentives are used for question & answer[C]//Proceedings of the 2010 SIGCHI conference on human factors in computing systems. Atlanta:ACM, 2010:305-314.
[30] 吴江, 李姗姗. 在线健康社区用户信息服务使用意愿研究[J]. 情报科学, 2017(4):119-125.
[31] 徐健. 基于网络用户情感分析的预测方法研究[J]. 中国图书馆学报, 2013, 39(3):96-107.
[32] JOYCE E, KRAUT R E. Predicting continued participation in newsgroups[J]. Journal of computer-mediated communication, 2006, 11(3):723-747.
[33] 金家华. 社会化问答平台中用户知识行为的影响因素研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[34] BALDWIN C L, MAY F. Verbal collision avoidance messages of varying perceived urgency reduce crashes in high risk scenarios[C]//Proceedings of the third international driving symposium on human factors in driver assessment, training and vehicle design. Rockport:Public Policy Center of University of Iowa, 2017:128-133.
[35] 沈旺, 国佳, 李贺. 网络社区信息质量及可靠性评价研究——基于用户视角[J]. 数据分析与知识发现, 2013, 29(1):69-74.
[36] HEIM J. Why people use social networking sites[C]//Proceedings of the 3rd international conference on online communities and social computing. Berlin:Springer, 2009:143-152.
[37] 百度知道. 用户影响力[EB/OL].[2018-07-30]. https://jingyan.baidu.com/article/84b4f5659102b460f6da322c.html.
[38] 彭丽徽, 李贺, 张艳丰. 基于灰色关联分析的网络舆情意见领袖识别及影响力排序研究——以新浪微博"8·12滨海爆炸事件"为例[J]. 情报理论与实践, 2017, 40(9):90-94.
[39] WENG J, LIM E P, JIANG J, et al. TwitterRank:finding topic-sensitive influential twitterers[C]//Proceedings of the third ACM international conference on web search and data mining. New York:ACM, 2010:261-270.
[40] 知网. 情感分析用词语集(beta版)[EB/OL].[2018-07-30].http://www.keenage.com/html/c_index.html.
[41] 邓胜利, 付少雄. 社交媒体附加信息对用户信任与分享健康类谣言的影响分析[J]. 情报科学, 2018, 36(3):51-57.
[42] 付少雄, 胡媛. 大学生健康信息行为对实际健康水平的影响研究——基于健康素养与健康信息搜寻视角[J]. 现代情报, 2018, 38(2):84-90, 105.
Outlines

/