[Purpose/significance] The paper aims to build the social QA community users to generate the quality evaluation index system, achieve automatic evaluation and selection of answers to user needs, and improve the quality of the community QA community service.[Method/process] The introduction of social emotional features and user characteristics, and factor analysis and structural equation analysis are used to build an index system for evaluating the quality of user generated answers. Then, based on the GA-BP neural network model, the automatic evaluation method of the answer quality is designed. The application of the quality evaluation index system and automatic evaluation method of user generated answers is studied.[Result/conclusion] The evaluation index system consists of 5 dimensions, including the characteristics of the answer text, the characteristics of the respondent, the timeliness, the user characteristics and the social emotional characteristics. The experimental analysis shows that the method of automatic evaluation of the answer quality based on GA-BP neural network is more accurate and lower than other methods. It is feasible and effective, and can be further applied and popularized.
[1] KIM S, OH J S, OH S. Best-answer selection criteria in a social Q&A site from the user-oriented relevance perspective[J].Proceedings of the Association for Information Science and Technology,2007,44(1):1-15.
[2] ISHIKAWA D, KANDO N, SAKAI T. What makes a good answer in community question answering? An analysis of assessors' criteria[EB/OL].[2018-12-26].https://www.researchgate.net/publication/228449185.
[3] OH S, WORRALL A, YI Y J. Quality evaluation of health answers in Yahoo! answers:a comparison between experts and users[J].Proceedings of the Association for Information Science and Technology, 2011, 48(1):1-3.
[4] FICHMAN P. A comparative assessment of answer quality on four question answering sites[J]. Journal of information science, 2011, 37(5):476-486.
[5] CHUA A Y K, BANERJEE S. So fast so good:an analysis of answer quality and answer speed in community question-answering sites[J].Journal of the Association for Information Science and Technology, 2013, 64(10):2058-2068.
[6] 孙晓宁,赵宇翔,朱庆华.基于SQA系统的社会化搜索答案质量评价指标构建[J].中国图书馆学报,2015,41(4):65-82.
[7] 李翔宇,陈琨,罗琳.FWG1法在社会化问答平台答案质量评测体系构建中的应用研究[J].图书情报工作,2016,60(1):74-82.
[8] 张煜轩.基于外部线索的社会化问答平台答案信息质量感知研究[D].武汉:华中师范大学,2016.
[9] 姜雯,许鑫,武高峰.附加情感特征的在线问答社区信息质量自动化评价[J].图书情报工作,2015,59(4):100-105.
[10] 袁红,张莹.问答社区中询问回答的质量评价——基于百度知道与知乎的比较研究[J].数字图书馆论坛,2014(9):43-49.
[11] 孔维泽,刘奕群,张敏,等.问答社区中回答质量的评价方法研究[J].中文信息学报,2011,25(1):3-8.
[12] 罗毅,曹倩.基于RIPA方法的社会问答平台答案质量研究[J].图书情报工作,2015,59(3):126-133,25.
[13] 姜雯,许鑫.在线问答社区信息质量评价研究综述[J].现代图书情报技术,2014(6):41-50.
[14] JEON J, CROFT W B, LEE J H, et al. A framework to predict the quality of answers with non-textual features[C]//Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2006:228-235.
[15] SHAH C, POMERANTZ J. Evaluating and predicting answer quality in community QA[C]//Proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval. New York:ACM,2010:411-418.
[16] 李晨,巢文涵,陈小明,等.中文社区问答中问题答案质量评价和预测[J].计算机科学,2011,38(6):230-236.
[17] 王伟,冀宇强,王洪伟,等.中文问答社区答案质量的评价研究:以知乎为例[J].图书情报工作,2017,61(22):36-44.
[18] 崔敏君,段利国,李爱萍.多特征层次化答案质量评价方法研究[J].计算机科学,2016,43(1):94-97,102.
[19] 胡海峰.用户生成答案质量评价中的特征表示及融合研究[D].哈尔滨:哈尔滨工业大学,2013.
[20] WANG R Y, STRONG D M. Beyond accuracy:what data quality means to data consumers[J]. Journal of management information systems, 1996, 12(4):5-33.
[21] JOHN B M, CHUA A Y K, GOH D H L. What makes a high-quality user-generated answer?[J]. IEEE Internet computing, 2011, 15(1):66-71.
[22] LIU B, FEMG J, LIU M, et al. Predicting the quality of user-generated answers using co-training in community-based question answering portals[J]. Pattern recognition letters, 2015,3(58):29-34.
[23] 徐安滢,吉宗诚,王斌. 基于用户回答顺序的社区问答答案质量预测研究[J]. 中文信息学报,2017,31(2):132-138.
[24] HONAG L, LEE J T, SONG Y I, et al. A model for evaluating the quality of user-created documents[C]//Asia information retrieval symposium. Berlin:springer, 2008:496-501.
[25] LIU Y, BIAN J, AGICHTEIN E. Predicting information seeker satisfaction in community question answering[C]//Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2008:483-490.
[26] TIAN Q, ZHANG P, LI B. Towards predicting the best answers in community-based question-answering services[EB/OL].[2018-12-26].http://www.public.asu.edu/~bli24/Papers/ICWSM2013.pdf.
[27] 刘高军,马砚忠,段建勇. 社区问答系统中"问答对"的质量评价[J]. 北方工业大学学报,2012,24(3):31-36.
[28] 来社安,蔡中民. 基于相似度的问答社区问答质量评价方法[J]. 计算机应用与软件,2013,30(2):266-269.
[29] CAI Y, CHAKRAVARTY S. Answer quality prediction in Q/A social networks by leveraging temporal features[J]. International journal of next-generation computing, 2013, 4(1):1-27.
[30] LI B, JIN T, LYU M R, et al. Analyzing and predicting question quality in community question answering services[C]//Proceedings of the 21st international conference on World Wide Web. New York:ACM, 2012:775-782.
[31] 袁健,刘瑜. 基于混合式的社区问答答案质量评价模型[J].计算机应用研究,2017,34(6):1708-1712.
[32] ANAND D, VAHAB F A. Predicting post importance in question answer forums based on topic-wise user expertise[C]//International conference on distributed computing and Internet technology. Berlin:Springer,2015:365-376.
[33] ARAI K, HANDAYANI A N. Predicting quality of answer in collaborative Q/A community[J]. Society and culture, 2013, 2(3):21-25.
[34] 吴明隆.结构方程模型——AMOS的操作与应用[M].重庆:重庆出版社,2009:52-53.
[35] 朱双东.神经网络应用基础[M].沈阳:东北大学出版社,2000.
[36] TANG H, WU E X, MA Q Y, et al. MRI brain image segmentation by multi-resolution edge detection and region selection[J]. Computerized medical imaging and graphics, 2000, 24(6):349-357.
[37] JEMEL S, HISSEL D, PERA M C, et al. On-board fuel cell power supply modeling on the basis of neural network methodology[J]. Journal of power sources, 2003, 124(2):479-486.