Study on Time Series of Online Experiential Product Review Based on Text Length: Taking Movie Reviews as an Example

  • Wang Jun ,
  • Li Zijian ,
  • Liu Xiaoman
Expand
  • School of Management, Jilin University, Changchun 130022

Received date: 2019-01-28

  Revised date: 2019-05-05

  Online published: 2019-08-20

Abstract

[Purpose/significance] According to the text length,the online experiential product review is divided into long text online review and short text online review. Exploring the temporal and content characteristic of these two types of online review provides intelligence basis to e-commerce platform about consumers' online review behavior and product demand preference.[Method/process] Python crawler language is employed to collect information of online review in movie review website,and then the paper constructs an online comment interval sequence. Human behavioral dynamics theory is used to find out time characteristic law in different types of online review,and on the other hand,text mining method is used to discover content characteristics in different types of online review. The characteristics are compared and analyzed in the paper.[Result/conclusion] Taking the movie review websites' online reviews as the data source, from the time perspective,this paper concludes that time interval sequence obeys to the power-law distribution between different types of online review behavior,and from the text mining perspective,it finds that the content characteristics performance similarities as well as significant differences.

Cite this article

Wang Jun , Li Zijian , Liu Xiaoman . Study on Time Series of Online Experiential Product Review Based on Text Length: Taking Movie Reviews as an Example[J]. Library and Information Service, 2019 , 63(16) : 103 -111 . DOI: 10.13266/j.issn.0252-3116.2019.16.011

References

[1] 张林,钱冠群,樊卫国,等. 轻型评论的情感分析研究[J]. 软件学报,2014,25(12):2790-2807.
[2] MUDAMBI S M,SCHUFF D. What makes a helpful online review? A study of customer reviews on Amazon.com[M]. Mount Laurel:Society for Information Management and The Management Information Systems Research Center,2010.
[3] CHEVALIER J A,MAYZLIN D. The effect of word of mouth on sales:online book reviews[J]. Journal of marketing research,2006,43(3):345-354.
[4] 汪涛,王魁,陈厚. 时间间隔何时能够提高在线评论的有用性感知-基于归因理论的视角[J]. 商业经济与管理,2015,280(2):46-56.
[5] 胡常春,宁昌会. 在线追评何时比初评更有用?——基于时间间隔和产品类型的调节效应分析[J]. 预测,2017,36(4):36-42.
[6] 张艳丰,彭丽徽,洪闯. 在线用户追评行为时间序列关联特征实证研究——以京东商城手机评论数据为例[EB/OL].[2019-01-11]. http://kns.cnki.net/kcms/detail/11.1762.G3.20181030.0921.004.html.
[7] 孙春华,刘业政. 电影预告片在线投放对票房的影响——基于文本情感分析方法[J].中国管理科学,2017,25(10):151-161.
[8] JIN L,HU B,HE Y. The recent versus the Out-Dated:an experimental examination of the time-variant effects of online consumer reviews[J]. Journal of retailing,2014,90(4):552-566.
[9] LIU J,ZHANG P,Lu Y. Automatic identification of messages related to adverse drug reactions from online user reviews using feature-based classification[J]. Iranian journal of public health,2014,43(11):1519-1527.
[10] BORRAJO L,SEARA VIEIRA A,IGLESIAS E L. TCBR-HMM:an HMM-based text classifier with a CBR system[J]. Applied soft computing,2015,26(1):463-473.
[11] CHASIN R,WOODWARD D,WITMER J,et al. Extracting and displaying temporal and geospatial entities from articles on historical events[J]. The computer journal,2014,57(3):403-426.
[12] 孙紫阳,顾君忠,杨静. 基于深度学习的中文实体关系抽取方法[J]. 计算机工程,2018,44(9):164-170.
[13] 董爽,王晓红,葛争红. 基于文本挖掘的B2C购物网站在线评论内容特征分析[J]. 图书馆理论与实践,2017(6):54-58.
[14] 张璐,吴菲菲,黄鲁成. 基于用户网络评论信息的产品创新研究[J]. 软科学,2015,29(5):12-16.
[15] 刘敏,王向前,李慧宗,等. 基于文本挖掘的网络商品评论情感分析[J]. 辽宁工业大学学报(自然科学版),2018,38(5):330-335.
[16] 李杰,李欢. 基于深度学习的短文本评论产品特征提取及情感分类研究[J].情报理论与实践,2018,41(2):143-148.
[17] 马松岳,许鑫. 基于评论情感分析的用户在线评价研究——以豆瓣网电影为例[J]. 图书情报工作,2016,60(10):95-102.
[18] 郑丽娟,王洪伟. 基于情感本体的在线评论情感极性及强度分析:以手机为例[J]. 管理工程学报,2017,31(2):47-54.
[19] 魏仁干,郑建国. 在线评论情感营销效应研究[J]. 上海对外经贸大学学报,2018,25(4):72-80.
[20] LEE K Y,YANG S B. The role of online product reviews on information adoption of new product development professionals[J]. Internet research,2015,25(3):435-452.
[21] 郭顺利,张向先,李中梅. 面向用户信息需求的移动O2O在线评论有用性排序模型研究——以美团为例[J]. 图书情报工作,2015,59(23):85-93.
[22] 修国义,王俭,过仕明. 引入信息传递效率的在线评论效用评价[J]. 情报科学,2019,37(1):43-50.
[23] 江晓东. 什么样的产品评论最有用?——在线评论数量特征和文本特征对其有用性的影响研究[J]. 外国经济与管理,2015,37(4):41-55.
[24] 方佳明,王钰莹,赵志荣. 不同产品品牌声誉对在线评论有用性影响因素的调节效应[J]. 软科学,2016,30(3):108-112.
[25] 王军,丁丹丹. 在线评论有用性与时间距离和社会距离关系的研究[J]. 情报理论与实践,2016,39(2):73-77,81.
[26] 王翠翠,高慧. 含追加的在线评论有用性感知影响因素研究——基于眼动实验[J]. 现代情报,2018,38(12):70-77,90.
[27] CHEEMA A,PAPATLA P. Relative importance of online versus offline information for Internet purchases:product category and Internet experience effects[J]. Journal of business research,2010,63(9):979-985.
[28] DELLAROCAS C,ZHANG X,AWAD N F. Exploring the value of online product reviews in forecasting sales:the case of motion pictures[J]. Journal of interactive marketing,2007,21(4):23-45.
[29] GOH K I,BARABASI A L. Burstiness and memory in complex systems[J]. EPL (Europhysics Letters),2008,81(4):48002-p1-48002-p5.
Outlines

/