Progress and Trend of Knowledge Fusion Research in Recent Years

  • Zhu Xiang ,
  • Zhang Yunqiu
Expand
  • Department of Medical Informatics, School of Public Health, Jilin University, Changchun 130021

Received date: 2018-10-25

  Revised date: 2019-03-14

  Online published: 2019-08-20

Abstract

[Purpose/significance] Knowledge fusion, as an effective method to deal with multi-source heterogeneous data and generate new knowledge semantically, has become a new research point of information science in the big data environment, but it is still in its infancy. The paper aims to sort out, evaluate the current research on knowledge fusion, and provide reference for future research.[Method/process] Firstly, the concept of knowledge fusion was analyzed. Then the framework, process and method of knowledge fusion were combed. Then the research trend of knowledge fusion was summarized. Finally, the research prospect was made.[Result/conclusion] Knowledge fusion research presented new research characteristics in the big data environment, but it can't meet the requirements of the big data environment. In the future, we should build a hierarchical and multi-dimensional big data knowledge fusion framework, improve the efficiency of knowledge fusion, build real-time dynamic fusion mechanism, and carry out big data empirical research based on knowledge fusion.

Cite this article

Zhu Xiang , Zhang Yunqiu . Progress and Trend of Knowledge Fusion Research in Recent Years[J]. Library and Information Service, 2019 , 63(16) : 143 -150 . DOI: 10.13266/j.issn.0252-3116.2019.16.015

References

[1] WALTZE E,LINAS J. Intelligence fusion pushed[J]. Aviation week and space technology,1979(1):205-211.
[2] TAHANI H,KELLER J M. Information fusion in computer vision using the fuzzy integral[J].IEEE transactions on systems man & cybernetics, 1990, 20(3):733-741.
[3] 刘晓娟,李广建,化柏林.知识融合:概念辨析与界说[J].图书情报工作,2016,60(13):13-19,32.
[4] 祝振媛,李广建."数据-信息-知识"整体视角下的知识融合初探——数据融合、信息融合、知识融合的关联与比较[J].情报理论与实践,2017,40(2):12-18.
[5] SMIRNOV A, PASHKIN M, CHILOV N, et al. Multi-agent architecture for knowledge fusion from distributed sources[C]//International workshop of central and eastern Europe on multi-agent systems. Heidelberg:Springer, 2001:293-302.
[6] MARTENS D, DE BACKER M, HAESEN R, et al. Ant-based approach to the knowledge fusion problem[C]//International workshop on ant colony optimization and swarm intelligence. Heidelberg:Springer, 2006:84-95.
[7] HU X, HU J, SEKHARI A, et al. A fuzzy knowledge fusion framework for terms conflict resolution in concurrent engineering[J]. Concurrent engineering, 2011,19(1):71-84.
[8] 邱均平,余厚强.知识科学视角下国际知识融合研究进展与趋势[J].图书情报工作,2015, 59(8):126-132,148.
[9] REECE A,HUI K,GRAY A,et al. Designing for scalability in a knowledge fusion problem[C]//International workshop on ant colony optimization and swarm intelligence. Heidelberg:Springer, 2006:84-95.
[10] HU X, HU J, SEKHARI A, et al. A fuzzy knowledge fusion framework for terms conflict resolution in concurrent engineering[J]. Concurrent engineering, 2011,19(1):71-84.
[11] FONTANI M, ARGONES-RUA E, TRONCOSO C, et al. The watchful forensic analyst:multi-clue information fusion with background knowledge[C]//IEEE International Workshop on Information Forensics and Security. Guangzhou:IEEE, 2013:120-125.
[12] FISCH D, KALKOWSKI E, SICK B. Knowledge fusion for probabilistic generative classifiers with data mining applications[J]. IEEE transactions on knowledge and data engineering, 2014, 26(3):652-666.
[13] SMIRNOV A, LEVASHOVA T, SHILOV N. Patterns for context-based knowledge fusion in decision support systems[J]. Information fusion, 2015, 21:114-129.
[14] 高劲松, 梁艳琪. 关联数据环境下知识融合模型研究[J]. 情报科学, 2016, 34(2):50-54.
[15] TAI C H, CHANG C T, CHANG Y S. Hybrid knowledge fusion and inference on cloud environment[J]. Future generation computer systems, 2018, 87:568-579.
[16] KRIEGEL E U, PFENNIGSCHMIDT S, ZIEGLER H G. Practical aspects of the use of a knowledge fusion toolkit in safety applications[C]//IEEE eleventh international symposium on autonomous decentralized systems. Mexico:IEEE, 2013:1-4.
[17] 沈旺, 李亚峰, 侯昊辰. 数字参考咨询知识融合框架研究[J]. 图书情报工作, 2013,57(19):139-143.
[18] LIU J, XU W, ZHAN H. Multi-source and heterogeneous knowledge organization and representation for knowledge fusion in cloud manufacturing[C]//Proceedings of international conference on soft computing techniques and engineering application. New Delhi:Springer, 2014:55-61.
[19] KAWTRAKUL A, KHUNTHONG V, SUKTARACHAN M, et al. Development of an information integration and knowledge fusion platform for spatial and time based advisory services:precision farming as a case study[C]//Annual SRⅡ global conference. San Jose:IEEE, 2014:241-248.
[20] YUE K, QIAN W, FU X, et al. Qualitative probabilistic network-based fusion of time-series uncertain knowledge[J]. Soft computing, 2015, 19(7):1953-1972.
[21] LI F, DONG X L, LANGEN A, et al. Knowledge verification for long-tail verticals[J]. Proceedings of the VLDB endowment, 2017, 10(11):1370-1381.
[22] WANG F, FAN H, LIU G. Big data knowledge service framework based on knowledge fusion[C]//Proceedings of the international joint conference on knowledge discovery, knowledge engineering and knowledge management. Porto:Lda, 2016:116-123.
[23] 李立睿,邓仲华."互联网+"背景下科研用户的小数据融合研究[J].图书情报工作,2016, 60(6):58-63.
[24] 朱娟,唐晓波.基于三层知识融合模型的个性化商品推荐[J].图书馆学研究,2017(5):24-30.
[25] 黄新平. 政府网站信息资源多维语义知识融合研究[D].长春:吉林大学,2017.
[26] 周芳, 刘玉战, 韩立岩. 基于模糊集理论的知识融合方法研究[J]. 北京理工大学学报(社会科学版), 2013, 15(3):67-73.
[27] 谢能付.基于农业本体和融合规则的知识融合框架研究[J].安徽农业科学,2013,41(1):395-397.
[28] 陈为东, 王萍, 王益成, 等. 政府网站信息资源的多维语义知识融合结构体系及策略研究[J]. 情报理论与实践, 2017, 40(6):111-116.
[29] 周利琴,范昊,潘建鹏.网络大数据中的知识融合框架研究[J].情报杂志,2018,37(1):145-150,197.
[30] 王曰芬, 岑咏华. 大数据时代知识融合体系架构设计研究[J]. 数字图书馆论坛, 2016(10):16-24.
[31] 唐晓波, 朱娟, 杨丰华. 大数据环境下的知识融合框架模型研究[J]. 图书馆学研究, 2016(1):32-35.
[32] 张心源, 邱均平. 大数据环境下的知识融合框架研究[J]. 图书馆学研究, 2016(8):66-70.
[33] 苏新宁.面向知识服务的知识组织理论与方法[M].北京:科学出版社, 2014.
[34] TAN L, TANG D, WANG Q, et al. Open design pattern, method, and its self-organization mechanism[J]. Procedia CIRP, 2016, 56:34-39.
[35] 刘渭滨, 邹智元, 邢薇薇. 模式分类中的特征融合方法[J]. 北京邮电大学学报, 2017, 40(4):1-8.
[36] 朱娟,唐晓波.基于三层知识融合模型的个性化商品推荐[J].图书馆学研究,2017(5):24-30.
[37] 索传军,盖双双.知识元的内涵、结构与描述模型研究[J].中国图书馆学报, 2018, 44(4):54-72.
[38] 温有奎,焦玉英.基于知识元的知识发现[M].西安:西安电子科技大学出版社,2011.
[39] 缑锦. 知识融合中若干关键技术研究[D]. 杭州:浙江大学, 2005.
[40] SUN L. Knowledge element-based competitive intelligence analytics serving for SWOT situation assessment[C]//The 8th international symposium on computational intelligence and design. Hangzhou:IEEE, 2015, 1:576-579.
[41] 唐晓波,朱娟.大数据环境下知识融合的关键问题研究综述[J].图书馆杂志,2017,36(7):10-16.
[42] 唐晓波,魏巍.知识融合:大数据时代知识服务的增长点[J].图书馆学研究,2015(5):9-14,8.
[43] 孙琳,王延章.基于知识元的多源竞争情报融合方法研究[J].情报杂志,2017,36(11):65-71.
[44] WU W, LI H, WANG H, et al. Probase:a probabilistic taxonomy for text understanding[C]//Proceedings of the 2012 ACM SIGMOD international conference on management of data. Scottsdale:ACM, 2012:481-492.
[45] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault:a Web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2014:601-610.
[46] 林海伦, 王元卓, 贾岩涛, 等. 面向网络大数据的知识融合方法综述[J]. 计算机学报, 2017, 40(1):1-27.
[47] 田鹏伟, 张娴, 胡正银, 等. 异构信息网络融合方法研究综述[J]. 图书情报工作, 2017, 61(7):137-144.
[48] GOU J, JIANG Y, WU Y, et al. A new knowledge fusion method based on semantic rules[C]//The 8th international conference on Signal processing. Beijing:IEEE, 2006:1865-1868.
[49] FENG Z, LI-JUAN Z, XIAO-MING F, et al. The research of Vietnamese language news clue extraction method based on converged network semantic knowledge[C]//The 27th Chinese conference on control and decision. Qingdao:IEEE, 2015:3287-3289.
[50] WANG G, HU Y, TIAN X, et al. An integrated open approach to capturing systematic knowledge for manufacturing process innovation based on collective intelligence[J]. Applied sciences, 2018, 8(3):340.
[51] FENSEL D, DECKER S, ERDMANN M, et al. Ontobroker:how to make the WWW intelligent[C]//Proceedings of the 11th Banff knowledge acquisition for knowledge-based systems. Banff:AAAI, 1998:36-42.
[52] XIE N, WANG W, YANG X, et al. Rule-based agricultural knowledge fusion in Web information integration[J]. Sensor letters, 2012, 10(1/2):635-638.
[53] LIU J, XU W, JIANG H. Research on dynamic ontology construction method for knowledge fusion in group corporation[J]. Advances in intelligent systems & computing, 2014, 278:289-298.
[54] SMIRNOV A, KASHEVNIK A, MIKHAILOV S, et al. Multi-level robots self-organization in smart space:approach and case study[C]//Conference on smart spaces. Cham:Springer, 2015:68-79.
[55] FAN H, WANG F, ZHENG M. Research on knowledge fusion connotation and process model[C]//China conference on knowledge graph and semantic computing. Singapore:Springer, 2016:184-195.
[56] SANTOS JR E, WILKINSON J T, SANTOS E E. Fusing multiple bayesian knowledge sources[J]. International journal of approximate reasoning, 2011, 52(7):935-947.
[57] COUSSEMENT K, BENOIT D F, ANTIOCO M. A bayesian approach for incorporating expert opinions into decision support systems:a case study of online consumer-satisfaction detection[J]. Decision support systems, 2015, 79:24-32.
[58] ZHANG L, QIAN W, ZHANG Z, et al. Research on knowledge demand information acquisition for product design[C]//The 12th international conference on computational intelligence and security. Wuxi:IEEE,2016:677-680.
[59] YUE W, CHEN X, GUI W, et al. A knowledge reasoning fuzzy-bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition[J]. Frontiers of chemical science and engineering, 2017, 11(3):414-428.
[60] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of mathematical statistics, 1967, 38(2):325-339.
[61] YAN R, LI G, LIU B. Knowledge fusion based on DS theory and its application on expert system for software fault diagnosis[C]//Prognostics and system health management conference. Beijing:IEEE,2015:1-5.
[62] PENG G, MAO H, WANG H, et al. BOM-based design knowledge representation and reasoning for collaborative product development[J]. Journal of systems science and systems engineering, 2016, 25(2):159-176.
[63] SUN L, WANG Y. A multi-attribute fusion approach extending dempster-shafer theory for combinatorial-type evidences[J]. Expert systems with applications, 2018, 96:218-229.
[64] SUN L, WARD M P, LI R, et al. Global spatial risk pattern of highly pathogenic avian influenza H5N1 virus in wild birds:a knowledge-fusion based approach[J]. Preventive veterinary medicine, 2018, 152:32-39.
[65] LAO N, MITCHELL T, COHEN W W. Random walk inference and learning in a large scale knowledge base[C]//Proceedings of the conference on empirical methods in natural language processing. Stroudsburg:Association for Computational Linguistics,2011:529-539.
[66] WU Y, LEHMAN A, DUNAWAY D J. Evaluations of a large topic map as a knowledge organization tool for supporting self-regulated learning[J]. Knowledge organization, 2015, 42(6):386-398.
[67] LEVCHUK G, BLASCH E. Probabilistic graphical models for multi-source fusion from text sources[C]//Symposium on computational intelligence for security and defense applications. Verona:IEEE, 2015:1-10.
[68] KOUMOUTSOS G, FASLI M, LEWIN I, et al. Graph-based information exploration over structured and unstructured data[C]//IEEE international conference on big data. Boston:IEEE, 2017:1991-2000.
Outlines

/