[Purpose/significance] During the evolution of public opinion, the derivation of public opinion could possess significant value for the forecasting and warning of public opinion both theoretically and empirically.[Method/process] To investigate the mechanism of public opinion derivation, this paper conducted the study using text clustering and DB cluster validity index. It proposed certain standards to judge the occurrence of public opinion derivation and its according velocity index. Furthermore, this paper used an well-known public opinion incident called "Classic Deadbeat" to conduct an empirical research.[Result/conclusion] The result of empirical study shows that:the derivative index reaches its climax during emergence phase and declined thereafter. The number of sub-topics reaches its climax during the integration phase and then declined thereafter; when the number of sub-topics decreased, the derivative index become negative,indicating that the public opinion become stabilized. When the public opinion incident reaches the disappearance phase, the number of sub topics become stable and the derivative index remain negative but approach zero. The study of derivative index of public opinion offers a new angle to study public opinion observation and prediction.
Huang Wei
,
Zhu Zhenyuan
,
Xu Yejing
,
Sun Yue
. Establishment of Public Opinion Derivative Index: An Empirical Study in China[J]. Library and Information Service, 2019
, 63(20)
: 26
-33
.
DOI: 10.13266/j.issn.0252-3116.2019.20.003
[1] 邓若伊.论自媒体传播与公共领域的变动[J].现代传播(中国传媒大学学报),2011(4):167-168.
[2] 高宾,王兰成.网络衍生舆情的传播模型及分析方法研究[J].情报理论与实践,2019,42(3):166-170,165.
[3] SAITO K, OHARA K, YAMAGISHI Y, et al. Learning diffusion probability based on node attributes in social networks[C]///International symposium on methodologies for intelligent systems. Warsaw:Springer, 2011:153-162.
[4] WATTS D J, DODDS P S. Influentials, networks, and public opinion formation[J]. Journal of consumer research, 2007, 34(4):441-458.
[5] 兰月新,董希琳,曾润喜,等.信息异化视角下网络舆情衍生效应模型研究[J].情报杂志,2015,34(1):139-143,149.
[6] 陈福集,陈婷.基于SEIRS传播模型的网络舆情衍生效应研究[J].情报杂志,2014,33(2):108-113,160.
[7] 尹熙成,朱恒民,马静,等.微博舆情话题传播的耦合网络模型——分析话题衍生性特征与用户阅读心理[J].情报理论与实践,2015,38(11):82-86.
[8] 王丽君,戴建华.网络舆情衍生链的定量分析方法研究[J].情报科学,2016,34(7):59-63.
[9] 靳晓宏,王强,付宏,等.主题事件舆情指数的构建及实证研究——以食品安全主题为例[J].情报理论与实践,2016,39(12):103-108.
[10] 贺恩锋,庄林远,徐文根.网络舆情潜在影响力指标体系构建及应用[J].情报杂志,2014,33(1):114-119.
[11] 邓尚民,董亚倩.基于AHP的高校网络舆情安全评估指标体系构建研究[J].情报杂志,2012,31(8):31-36.
[12] 陈福集,黄江玲.我国网络舆情演变文献研究综述[J].情报杂志,2013,32(7):54-58,92.
[13] 周昕,黄微,滕广青,等.网络舆情传播模式解析与重构研究[J].情报理论与实践,2016,39(12):25-30.
[14] 黄微,王洁晶,赵江元.微博舆情信息老化测度研究[J].情报资料工作,2017(6):6-11.
[15] 周开乐,杨善林,丁帅,等.聚类有效性研究综述[J].系统工程理论与实践,2014,34(9):2417-2431.