Temporal Characteristics of Wechat Users' Information Behavior Based on Data-driven Approach

  • Zhang Dayong ,
  • Kong Hongxin ,
  • Xu Lei ,
  • Jing Dong
Expand
  • 1. Key Laboratory of Interactive Media Design and Equipment Services Innovation, Harbin Institute of Technology, Harbin 150001;
    2. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001

Received date: 2019-01-24

  Revised date: 2019-04-16

  Online published: 2019-10-20

Abstract

[Purpose/significance] Compared with traditional information behavior approaches, the research on information behavior based on the data-driven approach pays more attention to the externality and objectivity of data, and the testing results can be more comprehensive understanding of user information behavior characteristics.[Method/process] This paper realizes the collection of Wechat users' sharing and reading behavior records through a self-built APP, and systematically analyses the temporal characteristics of Wechat users' information behavior.[Result/conclusion] The results show that the daily information behavior of Wechat users has significant holiday effect, but there are a obvious fat-tail phenomenon and strong burstiness effect in the time interval distribution of information behavior, which indicate that the information behavior of Wechat users has high complexity and uncertainty, and can not effectively predict its generating process; on the other hand, when the contents shared by Wechat users have very strong time-effectiveness, the most contents can be timely disseminated in Wechat, but the length of the dissemination chain is significantly affected by the theme of the shared contents. This study provides a reference for revealing the complexity of human information behavior.

Cite this article

Zhang Dayong , Kong Hongxin , Xu Lei , Jing Dong . Temporal Characteristics of Wechat Users' Information Behavior Based on Data-driven Approach[J]. Library and Information Service, 2019 , 63(20) : 104 -111 . DOI: 10.13266/j.issn.0252-3116.2019.20.012

References

[1] OH O, EOM C, RAO H R. Role of social media in social change:an analysis of collective sense making during the 2011 Egypt revolution[J]. Information systems research,2015,26(1):210-223.
[2] 李栋,徐志明,李生,等.在线社会网络中信息扩散[J].计算机学报,2014,37(1):189-206.
[3] LIU L, QU B,CHEN B, et al. Modelling of information diffusion on social networks with applications to WeChat[J]. Physica A, 2018, 496:318-329.
[4] ZHANG Y X, LI Z Q,GAO C L, et al. Mobile social big data:WeChat moments dataset, network applications, and opportunities[J]. IEEE network,2018, 32(3):146-153.
[5] XU X, YAO Z, SUN Q. Social media environments effect on perceived interactivity:an empirical investigation from WeChat moments[J].Online information review,2019,43(2):239-255.
[6] GAN C. Understanding WeChat users' liking behavior:an empirical study in China[J]. Computers in human behavior, 2017,68:30-39.
[7] 李嘉,任嘉莉,刘璇,等.微信公众平台的用户持续使用意愿研究[J].情报科学, 2016(10):26-33,55.
[8] 李力,丁宁.国内外移动社交类应用用户信息行为研究进展[J].图书情报工作, 2015, 59(10):137-144.
[9] BELKIN N. The cognitive viewpoint in information science[J]. Journal of information science, 1990, 16(1):11-15.
[10] 王艳,邓小昭.网络用户信息行为基本问题探讨[J]. 图书情报工作, 2009, 53(16):35-39.
[11] 叶平浩,张李义.2002-2011年国内外信息行为研究对比分析[J].情报科学,2013(4):149-154.
[12] KOSINSKI M, BACHRACHY, KOHLI P, et al. Manifestations of user personality in website choice and behaviour on online social networks[J]. Machine learn,2014,95(3):357-380.
[13] PHAM T,SHERIDAN P, SHIMODAIRA H. Joint estimation of preferential attachment and node fitness in growing complex networks[J]. Scientific reports,2016,6:1-13.
[14] ZHANG Z,LIU L, WANG H, et al. Collective behavior learning by differentiating personal preference from peer influence[J].Knowledge-based systems,2018,159:233-243.
[15] GARG S,KAUR K, KUMAR N, et al. Hybrid deep-learning-based anomaly detection scheme for suspicious flow detection in SDN:A social multimedia perspective[J].IEEE transactions on multimedia,2019,21(3):566-578.
[16] SEOL S, LEE H, YU J, et al. Continuance usage of corporate SNS pages:a communicative ecology perspective[J]. Information & management,2016,53(6):740-751.
[17] 李月琳,章小童.数据驱动的信息行为研究的回顾与展望[J].信息资源管理学报,2018(2):13-27.
[18] BARABÁSI A-L. The origin of bursts and heavy tails in human dynamics[J].Nature,2005,435(7039):207-211.
[19] DEZSÖ Z,ALMAAS E,LUKÁCS A,et al.Dynamics of information access on the web[J]. Physical review E,2006,73(6):066132.
[20] ZHOU T, KIET H A T, KIM B J, et al. Role of activity in human dynamics[J].Europhysics letters, 2008,82(2):28002.
[21] HU H B,HAN D Y. Empirical analysis of individual popularity and activity on an online music service system[J].Physica A, 2008,387(23):5916-5921.
[22] GRABOWSKI A, KRUSZEWSKA N, KOSINSKI R A. Dynamic phenomena and human activity in an artificial society[J].Physical Review E,2008,78(6):066110.
[23] GOH K I, BARABÁSI A-L. Burstiness and memory in complex systems[J].Europhysics letters,2008, 81(4):48002.
[24] 周涛,韩筱璞,闫小勇,等.人类行为时空特性的统计力学[J].电子科技大学学报, 2013, 42(4):481-539.
[25] 薛杨,许正良.微信营销环境下用户信息行为影响因素分析与模型构建-基于沉浸理论的视角[J].情报理论与实践,2016,(6):104-109.
[26] CHEN L, CHIN F G, SUN Y, et al. Integrating guanxi into technology acceptance:an empirical investigation of WeChat[J].Telematics and informatics,2017,34(7):1125-1142.
[27] 吕亚兰,黄成,周虎.微信平台用户健康信息行为及其影响因素研究[J].医学信息学杂志,2018,39(3):77-80.
[28] WANG G, ZHANG W, ZENG R X. WeChat use intensity and social support:the moderating effect of motivators for WeChat use[J].Computers in human behavior,2019,91:244-251.
Outlines

/