Construction and Empirical Study of User Portrait Model of Academic Blog: Taking ScienceNet as an Example

  • Yuan Run ,
  • Wang Qi
Expand
  • 1. Library of Jiangsu University, Jiangsu, 212013;
    2. Institute of Science and Technology Information, Jiangsu University, Jiangsu 212013

Received date: 2019-03-03

  Revised date: 2019-05-30

  Online published: 2019-11-20

Abstract

[Purpose/significance] User portrait marks the behavioral characteristics of academic groups, which provides basis for user identification, precise marketing of academic social platform and improvement of user experience during cold boot period.[Method/process] The public users behavior data is obtained and processed by using Python and R language. The model of user portrait is constructed from five dimensions:user basic attribute, positivity, authority, blog post influence and interest preference. The empirical study takes the blog users behavior data of Science Web as an example.[Result/conclusion] This paper proposes specific indicators and calculation methods to characterize the user characteristics of academic blogs, which shows the user portrait model has certain theoretical significance and application value for the management and operation of academic social platforms.

Cite this article

Yuan Run , Wang Qi . Construction and Empirical Study of User Portrait Model of Academic Blog: Taking ScienceNet as an Example[J]. Library and Information Service, 2019 , 63(22) : 13 -20 . DOI: 10.13266/j.issn.0252-3116.2019.22.002

References

[1] COOPER A. About face 3-the essentials of interaction design[C]//John Wiley & Sons,2007.
[2] 曾鸿,吴苏倪.基于微博的大数据用户画像与精准营销[J].现代经济信息,2016(16):306-308.
[3] 冉蹬.基于用户画像的手机游戏用户个性化内容推荐研究[D].西安:西安理工大学,2018.
[4] 李冰,王悦,刘永祥.大数据环境下基于K-means的用户画像与智能推荐的应用[J].现代计算机(专业版),2016(24):11-15.
[5] 毕闰芳.基于SVR的协同过滤与用户画像融合的电影个性化推荐研究[D].郑州:郑州大学,2018.
[6] 余孟杰.产品研发中用户画像的数据模建——从具象到抽象[J].设计艺术研究,2014,4(6):60-64.
[7] XU G, ZHANG Y, ZHOU X. Towards user profiling for Web recommendation[J]. Lecture notes in computer science, 2005, 3809:415-424.
[8] 张小可,沈文明,杜翠凤.贝叶斯网络在用户画像构建中的研究[J].移动通信,2016,40(22):22-26.
[9] 周妹璇.基于深度神经网络的用户画像研究[D].长沙:湖南大学,2018.
[10] 余传明,田鑫,郭亚静,等.基于行为-内容融合模型的用户画像研究[J].图书情报工作,2018,62(13):54-63.
[11] 辛菊琴,蒋艳,舒少龙.综合用户偏好模型和BP神经网络的个性化推荐[J].计算机工程与应用,2013,49(2):57-60.
[12] 马超.基于主题模型的社交网络用户画像分析方法[D].合肥:中国科学技术大学,2017.
[13] 姚远. 基于本体的用户画像构建方法[C]//中国计算机用户协会网络应用分会.第二十二届网络新技术与应用年会论文集.北京:北京联合大学北京市信息服务工程重点实验室,2018.
[14] RAGHURAM M A, AKSHAY K, CHANDRASEKARAN K. Efficient user profiling in twitter social network using traditional classifiers[EB/OL].[2019-05-20].https://doi.org/10.1007/978-3-319-23258-4_35.
[15] JIAMTHAPTHAKSIN R, AUNG T H. User preferences profiling based on user behaviors on Facebook page categories[C]//International conference on knowledge & smart technology. Chonburi, Thailand:IEEE, 2017:248-253.
[16] 韩梅花,赵景秀.基于用户画像的阅读疗法模式研究——以抑郁症为例[J].大学图书馆学报,2017,35(35):110.
[17] 王凌霄,沈卓,李艳.社会化问答社区用户画像构建[J].情报理论与实践,2018(1):129-134.
[18] 刘海鸥,孙晶晶,张亚明,等.在线社交活动中的用户画像及其信息传播行为研究[J].情报科学,2018,36(12):17-21.
[19] 崔超,罗欧.科研知识社区中用户画像的实现思路[J].信息通信技术与政策,2018(6):75-78.
[20] 陈天歌.基于社交媒体用户画像的品牌选择影响因素研究[D].广州:华南理工大学,2018.
[21] 周文静.面向校园论坛用户兴趣的用户画像构建方法研究[D].北京:北京邮电大学,2018.
[22] 王琛.学术博客影响力评价研究[D].太原:山西财经大学,2018.
[23] 郑超,陈峰.科学家博客h指数与科学家h指数相关性分析[J].图书馆学研究,2013(3):53-57.
[24] 张晓阳,李晓亮.科学家博客h指数评价及其相关性分析[J].图书情报工作,2010,54(2):66-69.
[25] 金碧辉,ROUSSEAU R. R指数、AR指数:h指数功能扩展的补充指标[J].科学观察,2007(3):1-8.
[26] 刘臣,吉莉,唐莉.基于二分网中心节点识别的产品评论特征-观点词对提取研究[J].计算机系统应用,2018,27(11):9-16.
[27] 万国,张桂平,白宇,等.基于特征加权的新闻主题句抽取[J].中文信息学报,2017,31(5):120-126.
Outlines

/