[Purpose/significance] By means of the classification and circulation data of library collection, the paper finds the close correlation between reader characteristics and library collection circulation, establish the relationship model. And through model fitting and prediction, this study explores the implicit rule between reader and library circulation which provides technical and means support for the intelligent management of library.[Method/process] Firstly, this paper used clustering and correlation analysis techniques to extract the macroscopic observable characteristics of readers, constructed the direct and indirect mapping relationship between reader characteristics and book classification, and then constructed the regression model of the circulation of reader characteristics and classified books, and verified the validity of the model and optimized the goodness of fit of the model. According to the effective model, this paper explored the trend change of library circulation, and sum up the underlying rules of knowledge construction of the macroscopic characteristics of readers, as well as the impact on the circulation of books.[Result/conclusion] There are 3 classification characteristics of readers, namely, the professional learning direction representing the social role requirements of readers, the enrollment batch representing the interaction effect between readers and the number of readers, which can effectively fit and predict the book circulation. The prediction results show that the model has high accuracy and can be used as an effective tool to provide reliable technical support for library to develop knowledge service.
Wang Hong
,
Yuan Xiaoshu
,
Yuan Xiaoling
,
Huang Jianguo
. Prediction of Reader Lending Trend in Academic Library by Linear Regression Modeling[J]. Library and Information Service, 2020
, 64(3)
: 59
-70
.
DOI: 10.13266/j.issn.0252-3116.2020.03.007
[1] GIDDENS A. Sociology[M].Cambridge:Polity Press.2009.
[2] SUMMERS K. Adult reading habits and preferences in relation to gender differences[J].Reference & user services quarterly,2013,52(3):243-249.
[3] 周甜甜.女性阅读与图书馆服务探微[J].大学图书情报学刊,2014(3):105-108.
[4] 舒曼.新生代农民工阅读倾向与成就动机、心理控制源关系研究[J].中国出版,2017(24):29-33.
[5] 薛文辉.古籍读者阅读倾向调查分析[J].图书馆学刊,2018(3):89-94.
[6] 胡一樱.公共图书馆读者阅读倾向实例研究——以绍兴市柯桥区图书馆为例[J].图书馆研究与工作,2015(2):14-17.
[7] 袁红志.从图书流通数据透视馆藏结构及读者阅读倾向——以衡阳师范学院图书馆为例[J].衡阳师范学院学报,2016(2):170-173.
[8] 谢丹玫,徐荣华,陆飞,等.大学生的阅读需求与馆藏建设[J].情报探索,2014(2):68-72,75.
[9] 周国正,张学敏.大学生阅读倾向对高校图书馆利用的影响[J].情报探索,2016(8):84-86.
[10] 吴晓海,黄芳.首都医科大学医学生图书借阅行为分析[J].中华医学图书情报杂志,2015(5):44-49.
[11] 韩丽.自我决定理论视角下高校读者阅读意愿影响因素探究[J].图书情报工作,2018,62(14):22-27.
[12] 赵雨薇.基于数据挖掘感知读者需求的高校图书馆差异化服务研究[J].图书馆工作与研究,2018(7):68-73.
[13] 耿倩.贝叶斯算法在图书馆读者智能分析中的应用[J].自动化技术与应用,2018(5):14-16.
[14] 陈添源.高校读者借阅行为的关联分析及应用实践[J].情报探索,2018(12):97-102.
[15] 牛秀.基于多参数指数平滑的图书借阅量预测[J].科技情报开发与经济,2011(28):50-51.
[16] 陈娟,洪丹.基于Logistic模型的高校图书馆用户借阅影响因素分析[J].情报科学,2013(3):96-101.
[17] 尹志强.基于数据挖掘的高校图书馆图书借阅流量建模与分析[J].微电子学与计算机,2018(11):95-99.
[18] 张囡,张永梅.基于灰色神经网络的图书馆图书借阅量预测[J].情报探索,2013(3):133-135.
[19] 葛凡.基于灰色系统模型的图书借阅量预测分析[J].教育教学论坛,2018(11):106-109.
[20] 田梅.基于混沌时间序列模型的图书借阅流量预测研究[J].图书馆理论与实践,2013(7):1-3,26.
[21] 钟亮.用k-最近邻和贝叶斯分类预测图书用户喜好[J].信息技术,2016(9):62-65.
[22] WOOLDRIDGE J. Introductory econometrics[M]. Mason:Cengage Learning,2009.