The Challenges and Countermeasures of Knowledge Organization in Big Data Service

  • Zhang Yunliang
Expand
  • 1. Institute of Scientific & Technical Information of China, Beijing 100038;
    2. Key Laboratory of Rich-media Knowledge Organization and Service of Digital Publishing Content, Beijing 100038

Received date: 2019-05-09

  Revised date: 2019-09-03

  Online published: 2020-02-20

Abstract

[Purpose/significance] Big data services bring more challenges to knowledge organization. Through observing, understanding and analyzing these challenges, knowledge organization work stakeholders would grasp possible changes and provide countermeasures.[Method/process] Focusing on the construction and application of knowledge organization system, challenges of different aspects of knowledge organization were analyzed and countermeasures were proposed from related real case practice.[Result/conclusion] The challenges of knowledge organization in big data services can be divided into four aspects:data explosion, document assurance, integration and application. A series of knowledge organization frameworks for big data services including new knowledge structure, multi-source updating strategy and elastic application service model are proposed, which can better meet the above challenges.

Cite this article

Zhang Yunliang . The Challenges and Countermeasures of Knowledge Organization in Big Data Service[J]. Library and Information Service, 2020 , 64(4) : 88 -94 . DOI: 10.13266/j.issn.0252-3116.2020.04.010

References

[1] FIDELIA I S, GEOFFREY C B. Implications of big data for knowledge organization[J].Knowledge organization,2017, 44(3):187-198.
[2] MARCIO V, MARISTELAT H, EDISON I, et al.Transforming open data to linked open data using ontologies for information organization in big data environments of the Brazilian government:the Brazilian Database Government Open Linked Data-DBgoldbr[J].Knowledge organization,2018, 45(6):443-466.
[3] 陈传夫,钱鸥,代钰珠.大数据时代的数字图书馆建设研究[J].图书情报工作,2014,58(7):40-45.
[4] 王曰芬,傅柱.大数据环境下知识表示与知识组织方法应用[J].数字图书馆论坛,2014(3):32-43.
[5] 阳小兰,钱程,朱福喜.基于云计算的大数据服务资源评价方法[J].计算机科学,2018,45(5):295-299.
[6] 蒋永福. 论知识组织[J]. 图书情报工作, 2000,44(6):5-10.
[7] 贺德方,乔晓东,朱礼军,等. 汉语科技词系统(新能源汽车卷)[M].北京:科学技术文献出版社,2012.
[8] 李旭晖,凡美慧.大数据中的知识关联[J].情报理论与实践,2019,42(2):68-73,107.
[9] 李旭晖,秦书倩,吴燕秋, 等.从计算角度看大规模数据中的知识组织[J].图书情报知识,2018(6):94-102.
[10] 孙坦,刘峥,崔运鹏, 等.融合知识组织与认知计算的新一代开放知识服务架构探析[J].中国图书馆学报,2019,45(3):38-48.
[11] 陆泉,江超,陈静.基于扩展疾病本体的电子病历大数据组织研究[J].图书情报知识,2019(1):109-118.
[12] 潘刚,张运良,钟庆虹.工程科技领域知识服务的思考与实践[J].情报工程,2018,4(5):4-12.
[13] 国家新闻出版广电总局数字出版司.关于批准发布《知识服务标准体系表》等8项项目标准的通知[EB/OL].[2019-04-30].http://www.gapp.gov.cn/ztzzd/zdgzl/cbyszhzxsjxmzl/contents/4384/274644.shtml.
[14] 贺德方.《汉语主题词表》的回顾与展望[J].情报理论与实践,2010,33(2):1-4.
[15] 《汉语主题词表(自然科学卷)》[M]. 北京:科学技术文献出版社,2018.
[16] TSINGHUA UNIVERSITY KEG.XLORE[EB/OL].[2019-04-30] https://xlore.org/.
[17] NATIONAL LIBRARY OF MEDICINE (US).UMLS reference manual[EB/OL].[2019-04-30]. https://www.ncbi.nlm.nih.gov/books/NBK9679/.
[18] 中国工程科技知识中心.中国工程知识中心词表总表核心集CKT-C[EB/OL].[2019-08-09]. http://data.ckcest.cn/filedata/index.html?p=detailDoc&i=8a9a2dd466539c2d01665 bc34c510000.
[19] DOUGLAS L.Cyc[EB/OL].[2019-04-30].https://en.wikipedia.org/wiki/Cyc.
[20] 刘菡.略论信息组织中的文献保证原则[J].国家图书馆学刊,2019,28(1):57-65.
[21] 娄策群, 桂晓苗, 杨小溪. 我国信息生态学学科建设构想[J]. 情报科学, 2013, 31(2):13-18.
[22] W3C WORKING GROUP. SKOS simple knowledge organization system primer[EB/OL].[2019-04-30].https://www.w3.org/TR/skos-primer/.
[23] 全国文献工作标准化技术委员会. 汉语叙词表编制规则:GB13190-91[S]. 北京:中国标准出版社,1992.
[24] 全国文献工作标准化技术委员会.信息与文献叙词表及与其他词表的互操作第1部分:用于信息检索的叙词表:GB/T 13190.1-2015[S].北京:中国标准出版社,2015.
[25] 王小华.《中图法》第5版交替类目研究综述[J].图书馆学刊,2015,37(11):132-134.
[26] 中华人民共和国国家知识产权局专利局. 中国专利文献著录项目:ZC0009-2012[EB/OL].[2019-08-09].http://www.sipo.gov.cn/wxfw/zlwxxxggfw/zsyd/bzyfl/zlwxyxxbz_gnbz/1053740.htm.
Outlines

/