An Empirical Study on Influencing Factors of Live-streaming APP Using Behavior

  • Wang Xiwei ,
  • Liu Weili ,
  • Jia Fengqi ,
  • Zhang Chuang
Expand
  • 1. School of Management, Jilin University, Changchun 130022;
    2. Big Data Management Research Center, Jilin University, Changchun 130022

Received date: 2019-08-07

  Revised date: 2019-10-21

  Online published: 2020-03-05

Abstract

[Purpose/significance] The emerging interactive media represented by live-streaming is profoundly changing people's living habits and the spiritual and cultural needs. Analysis of the influencing factors of the behavior of live-streaming APP users can enable the live-streaming platform to better understand the adoption characteristics of live-streaming users. The adoption characteristics of live-streaming users help platform operators to provide better services.[Method/process] Based on the TAM and UTAUT models, a questionnaire and a structural equation model were used to construct a conceptual model of the influencing factors of the use behavior of online live APP users, and an empirical analysis was conducted on the influencing factors model of typical groups.[Result/conclusion] The results of data analysis show that the most influential effect of online live APP user is perceived interactivity, followed by user perceived value; perceived risk has a negative impact on the willingness of users of live-streaming users and social factors have no effect on their willingness to use.

Cite this article

Wang Xiwei , Liu Weili , Jia Fengqi , Zhang Chuang . An Empirical Study on Influencing Factors of Live-streaming APP Using Behavior[J]. Library and Information Service, 2020 , 64(5) : 22 -31 . DOI: 10.13266/j.issn.0252-3116.2020.05.003

References

[1] 中国互联网络信息中心.中国互联网络发展状况统计报告[EB/OL].[2019-05-20].http://www.cac.gov.cn/2018-08/20/c_1123296882.htm.
[2] 2018年中国直播市场分析及预测:市场规模达到363.3亿元[EB/OL].[2019-05-20].http://www.chinairn.com/news/20180907/084503136.shtml.
[3] 平家宏.2018年网络直播行业发展方分析报告[EB/OL].[2019-05-21]. https://wenku.baidu.com/view/96d098f8690203d8ce2f0066f5335a8102d266f9.html.docx.
[4] KHAN M L. Social media engagement:what motivates user participation and consumption on YouTube?[EB/OL].[2019-07-20].https://doi.org/10.1016/j.chb.2016.09.024.
[5] BRUCEA Z H,NEILLA J T,SJOBLOMB M,et al. Social motivations of live-streaming viewer engagement on Twitch[EB/OL].[2019-07-20].https://doi.org/10.1016/j.chb.2018.02.013.
[6] SCHEIBE K,FIETKIEWICZ K J,STOCK W G. Information behavior on social live streaming services[J]. Journal of information science theory and practice 2016,4(2):06-20.
[7] PAYNE K,KEITH M J,SCHUETALER R M. Examining the learning effects of live streaming video game instruction over Twitch[EB/OL].[2019-07-20].https://doi.org/10.1016/j.chb.2017.08.029.
[8] 马志浩,葛进平.青年群体网络直播平台接入鸿沟的影响因素——基于技术采纳与持续使用的视角[J].新闻与传播评论,2018,71(2):112-128.
[9] 侯德林,蔡淑琴,夏火松,等.网络视频服务用户内容生成上传行为意愿实证研究[J].情报学报,2013,32(8):887-896.
[10] 乐晓蓉.大学生参与网络直播的实证分析及应对策略[J].思想理论教育,2018(2):76-80.
[11] 喻昕,许正良.网络直播平台中弹幕用户信息参与行为研究——基于沉浸理论的视角[J].情报科学,2017,35(10):147-151.
[12] 杨刚,刘颢琳,徐韵影,等.网络直播引导下用户信息行为特征研究[J].情报理论与实践,2018,41(6):100-105,99.
[13] WILSON T D. Human information behavior[J].Informing science,2000,3(2):49-55.
[14] DAVIS F D,BAGOZZI R P,WARSHAW P R. User acceptance of computer technology:a comparison of two theoretical models[J].Management science,1989(8):982-1003.
[15] 宋文杰,朱学芳.基于TAM模型的移动图书馆用户行为意愿研究[J].图书馆学研究,2015(11):71-77,60.
[16] MOOM J W,KIM Y G. Extending the TAM for a World-Wide-Web context[J].Information & management,2001,38(4):217-230.
[17] 谢新洲,安静,王尧.基于技术接受模型的微信用户信息发布行为研究[J].情报学报,2015,34(8):801-808.
[18] 周沛,马静,徐晓林.移动电子政务公众采纳影响因素的实证研究[J].图书情报工作,2012,56(5):134-138.
[19] 孙建军,李君君.基于TAM/TTF整合的电子商务用户接受模型[J].图书情报工作,2010,54(20):119-123.
[20] VENKATESH V,MORRIS M G,DAVIS G B. User acceptance of information technology:toward a unified view[J].Mis quartrtly,2003,27(3):425-478.
[21] IM I,HONG S,KANG M S. An international comparison of technology adoption testing the UTAUT model[J]. Information & management,2011,48(1):1-8.
[22] WILLIAMS M D, RANA N P,DWIVEDI Y K. The unified theory of acceptance and use of technology (UTAUT):a literature review[J].Journal of enterprise information management,2015,28(3):443-488.
[23] BROWN S A,DENNIS A R,VENKATESH V. Predicting collaboration technology use:integrating technology adoption and collaboration research[J].Journal of management information systems,2010,27(2):9-54.
[24] WEERAKKODY V,RAMZI El-HADDADEH R,FADS Al-SOBHI F, et al. Examining the influence of intermediaries in facilitating e-government adoption:an empirical investigation[J]. International journal of international manggement,2013,33(5):716-725.
[25] 柯佳秀,章小童,邓小昭.新媒体环境下大学生听书行为意向影响因素研究[J].图书情报工作,2017,61(10):101-109.
[26] 孟健,刘阳.移动打车软件用户使用意愿影响因素研究[J].现代情报,2016,36(2):25-31.
[27] 武学斐.影响用户接受移动互联网的关键因素分析[D].北京:北京邮电大学,2008.
[28] BRUCE D H. Competitive advantage:creating and sustaining superior performance[M].New York:FreePress,1985:94-95.
[29] GU Z W,WEI J,XU F Y. An empirical study on factors influencing consumers' initial trust in wearable commerce[J]. Journal of computer information systems,2016,56(1):79-85.
[30] 谢佳琳,张晋朝.用户在线生成内容意愿影响因素研究[J].信息资源管理学报,2014,4(1):69-77.
[31] 王晰巍,李师萌,王楠阿雪,等.新媒体环境下用户信息交互意愿影响因素与实证——以汽车新媒体为例[J].图书情报工作,2017,61(15):15-24.
[32] 李武,胡泊,季丹.电子书阅读客户端的用户使用意愿研究——基于UTAUT和VAM理论视角[J].图书馆论坛,2018,38(4):103-110.
[33] 李宝库,高玉平,郭婷婷.基于VAM模型的用户移动个性化推荐采纳意愿研究[J].现代管理科学,2017(5):15-17.
[34] 李彩云.基于UTAUT模型的手机视频APP用户使用意愿影响因素研究[J].互联网天地,2014(11):24-28.
[35] 薛雨潇,徐青青.网络直播乱象及原因分析[J].今传媒,2017,25(11):44-46.
[36] ZAINAB A M, KIRAN K,KARIM N H A, et al. UTAUT'S performance consistency:Empirical evidence from a library management system[J].Malaysian journal of library & information science,2018,23(1):17-32.
[37] AKRAM H,RUI Q,HABIBUR R. Investigating factors influencing the physicians' adoption of electronic health record (EHR) in healthcare system of Bangladesh:an empirical study[EB/OL].[2019-07-25].https://doi.org/10.1016/j.ijinfomgt.2018.09.016.
[38] 曹越,毕新华.云存储服务用户采纳影响因素实证研究[J].情报科学,2014,32(9):137-141,146.
[39] 李敏.视频直播产品用户接受模型研究[D].北京:首都经济贸易大学,2017.
[40] COX D F. Risk taking and information handling in consumer behavior[M].Boston:Harvard University Press,1967.
[41] 赵英,张美,谢彩云.用户接受手机互联网的影响因素的实证研究[J].西南民族大学学报(人文社会科学版),2014,35(2):75-80.
[42] SALLEH N,HUSSEIN R,MOHAMED N,et al. An empirical study of the factors influencing information disclosure behavior in social networking sites[C]//2013 international conference on advanced computer science applications and technologies. Piscataway:IEEE,2013:181-185.
[43] 易涌征.移动支付消费者接受的影响因素研究[D].杭州:浙江大学,2012.
[44] UDO G,BAQCHI K,MAITY M. Exploring factors affecting digital piracy using the norm activation and UTAUT models:the role of national culture[J].Journal of business ethics.2016,135(3):517-541.
[45] SJBLOM M,TORHNEN M,HAMARI J, et al. Content structure is king:an empirical study on gratifications game genres and content type on Twitch[J].Computers in human behavior,2017,73:161-171.
[46] 赵呈领,王娴,马晨星.感知交互性对在线学习者持续学习意愿的影响:基于S-O-R视角[J].现代远距离教育,2018(3):12-20.
[47] WANG C C.Factors influencing the adoption of online group-buying in virtual community[J].Multimedia tools and applications,2017,76(9):11751-11768.
[48] 王倩倩.网络教学平台感知交互性对用户行为意向的影响研究[D].杭州:浙江财经大学,2018.
[49] OSHLYANSKY L,CAIRNS P,THIMBLEBY H. Validating the unified theory of acceptance and use of technology (UTAUT) tool cross-culturally[EB/OL].[2019-05-20].https://www.researchgate.net/publication/221437093_Validating_the_Unified_Theory_of_Acceptance_and_Use_of_Technology_UTAUT_tool_cross-_culturally.
[50] 陈洁,朱小栋.基于UTAUT和ITM整合视角的微信支付用户使用行为影响因素研究[J].现代情报,2015,35(4):35-40.
[51] 王哲.社会化问答社区知乎的用户持续使用行为影响因素研究[J].情报科学,2017,35(1):78-83,143.
[52] DAVENPORT T H,PRUSAK L. Information ecology:mastering the information and knowledge environment[M].New York:Oxford University Press,1997.
Outlines

/