[Purpose/significance] Enrich and expand the theoretical research system of building dynamic portrait of social academic App users based on small data, so as to provide ideas and reference for the social academic App platform to effectively predict the evolution trend of user behavior and improve the precise service level.[Method/process] Firstly, based on the deep analysis of concept and characteristics of the small data, combined with the feature of social academic App, this paper from two aspects of user behavior and the surface of deep factors designed dynamic portrait label system. Then collected the small data with strong correlation and high value with the user as the data support of the portrait, and clarified the acquisition and processing method. Finally, it put forward the research method to realize the dynamic portrait and form the overall frame model.[Result/conclusion] The construction of dynamic portrait of social academic App users based on small data can effectively refine the granularity of portrait, and improve the lag of previous portrait, which has important reference value for the promotion of accurate service level of social academic App platform under data-driven situation.
[1] 耿斌,孙建军.在线学术社交平台的用户行为研究——以ResearchGate平台南京大学用户为例[J].图书与情报,2017,61(5):47-53.
[2] HOLDEN R J, KULANTHAIVEL A, PURKAYASTHA S, et al. Know thy eHealth user:development of biopsychosocial personas from a study of older adults with heart failure[J].International journal of medical informatics, 2017, 108(12):158-167.
[3] TRUSOV M, MA L, JAMAL Z. Crumbs of the cookie:user profiling in customer-base analysis and behavioral targeting[J].Marketing science, 2016,35(3):405-426.
[4] 陈臣,马晓亭.基于小数据的图书馆用户精准画像研究[J].情报资料工作, 2018,40(5):57-61.
[5] 孙丹霞,王伟军,姜毅.基于用户小数据的嵌入式学科服务研究[J].图书馆工作与研究,2019(4):84-90.
[6] 刁羽,畅佩.面向小数据的图书馆精准创客服务研究[J].图书馆理论与实践,2018(5):109-112.
[7] 王欣,张冬梅.大数据环境下基于高校读者小数据的图书馆个性化智能服务研究[J].情报理论与实践,2018,41(2):132-137.
[8] ESTRIN D. Small data, where n=me[J].Communications of the ACM, 2014, 57(4):32-34.
[9] 陈臣,马晓亭.基于小数据的图书馆用户精准画像研究[J].情报资料工作,2018(5):57-61.
[10] HSIEH C K, YANG L, WEI H, et al. Immersive recommendation:news and event recommendations using personal digital traces[C]//Proceedings of the 25th international conference on World Wide Web. Montreal:ACM, 2016:51-62.
[11] 陈臣,李强.基于小数据决策的读者兴趣发现与预测[J].情报科学,2017,35(5):75-80.
[12] 李立睿,邓仲华."互联网+"背景下科研用户的小数据融合研究[J].图书情报工作,2016,60(6):58-63.
[13] 张晓丹,江洪,王可慧.学术App用户采纳意愿影响因素实证研究[J]. 图书情报工作,2018,62(18):90-101.
[14] 纪庆楠.基于用户体验的智能公交APP交互设计研究[D].西安:西安理工大学,2017.
[15] 李大伟,杜洪波,周孝林,等.基于"用户画像"挖掘的图书推荐App设计[J].软件,2018,39(5):35-37.
[16] 韩张俊杰.基于数据分析的资讯类App用户画像设计与应用[D].北京:中国科学院大学,2017.
[17] 郭伟.基于云平台的科技期刊APP开发方法研究——以"长白山学术汇"为例[J].中国科技期刊研究,2018,29(5):485-490.
[18] 王慧.学术期刊APP使用的影响因素研究[J].西南石油大学学报(社会科学版),2017,19(6):76-82.
[19] 刘勇,吴翔宇,解本巨.基于动态用户画像的信息推荐研究[J].计算机系统应用,2018,27(6):236-239.
[20] 王益成,王萍.基于用户动态画像的科技情报服务推荐模型构建研究[J].情报理论与实践,2019,42(4):83-88.
[21] 张慧敏.基于生活方式转型的动态用户画像研究[D].无锡:江南大学,2018.
[22] 张莉曼,张向先,卢恒,等.知识直播平台付费用户群体画像研究[J].图书情报工作,2019,63(5):84-91.
[23] 刘漫.基于TPB的大学生信息搜寻行为决定因素实证研究[J].图书馆工作与研究,2014(5):39-44.
[24] LEWIN K. Field theory in social science[M].New York:Harpperand Brother Publishers, 1951:239-240.
[25] 许鹏程,毕强,张晗,等.数据驱动下数字图书馆用户画像模型构建[J]. 图书情报工作,2019,63(3):30-37.
[26] 衡书鹏,周宗奎,雷玉菊,等.现实-理想自我差异对青少年游戏成瘾的影响:化身认同和沉浸感的序列中介作用[J]. 心理与行为研究,2018,16(2):253-260.
[27] 石晓姣.管理团队认知能力对决策效果的影响机制研究[D].沈阳:沈阳工业大学,2018.
[28] 张继东,骆莎莎.基于情景化偏好的移动图书馆用户行为感知研究[J].情报科学,2018,36(9):52-56.
[29] 杜巍,高长元.移动电子商务环境下个性化情景推荐模型研究[J].情报理论与实践,2017,40(10):56-61.
[30] 余传明,田鑫,郭亚静,等.基于行为-内容融合模型的用户画像研究[J]. 图书情报工作,2018,62(13):54-63.
[31] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J].Journal of machine learning research,2003,3(1):993-1022.
[32] 曾子明,万品玉.融合演化特征的公共安全事件微博情感分析[J].情报科学,2018,36(12):3-8,51.
[33] 陈添源.高校移动图书馆用户画像构建实证[J].图书情报工作,2018,62(7):38-46.
[34] 陈娟,吴卓青,邓胜利.基于层次聚类法的"知乎"用户细分与行为分析[J]. 情报理论与实践,2018,41(7):111-116.
[35] 林惠惠.演化聚类算法研究及其应用[D].扬州:扬州大学,2017.
[36] CHAKRABARTI D, KUMAR R, TOMKINS A. Evolutionary clustering[C]//Proceedings of the 12th ACM SIGKDD conference on knowledge discovery and data mining. New York:ACM,2006:554-560.
[37] 王富鹏.演化聚类研究及其在金融股票市场的应用[D].杭州:浙江大学,2014.
[38] 张琳,牟向伟.基于Canopy+K-means的中文文本聚类算法[J].图书馆论坛,2018,38(6):113-119.
[39] 卢建云,朱庆生,吴全旺.一种启发式确定聚类数方法[J].小型微型计算机系统,2018,39(7):1381-1385
[40] OLIVEIRA M,GAMA J. A framework to monitor clusters evolution applied to economy and finance problems[J]. Intelligent data analysis,2012,16(1):93-111.
[41] KRITIKOU Y, DEMESTICHAS P, ADAMOPOULOU E, et al. User profile modeling in the context of Web-based learning management systems[J].Journal of network & computer applications, 2008,31(4):603-627.