Research on Topic Identification of Papers Core Research Subjects and Evolution Path Visualization Method

  • Yue Lixin ,
  • Zhou Xiaoying ,
  • Chen Yini
Expand
  • School of Information Resources Management, Renmin University of China, Beijing 100872

Received date: 2019-05-09

  Revised date: 2019-10-21

  Online published: 2020-03-05

Abstract

[Purpose/significance] This paper proposes the identification of the core research topics and their evolution path visualization methods, in order to provide reference for the field subject evolution analysis research, which has certain significance for revealing the evolution characteristics and development laws of the core topics.[Method/process] Using the LDA model for topic recognition and combining multi-dimensional scaling analysis and visualization techniques to map LDA topic recognition results to two-dimensional space. The topic similarity algorithm was used to detect the association between adjacent time topics, a new visual display method was proposed. We constructed cross-evolution paths of different types of research topics to reveal the dynamic changes of core topics and secondary topics in the evolution process.[Result/conclusion] Taking the medical health information field in China as an example, the research results show that the core research topics in the field of medical and health information in China mainly include electronic health records and Internet medical treatment. Among them, core themes such as health management and smart medical treatment show a good development trend.

Cite this article

Yue Lixin , Zhou Xiaoying , Chen Yini . Research on Topic Identification of Papers Core Research Subjects and Evolution Path Visualization Method[J]. Library and Information Service, 2020 , 64(5) : 89 -99 . DOI: 10.13266/j.issn.0252-3116.2020.05.010

References

[1] 王莉亚.主题演化研究进展[J].情报探索, 2014(4):29-32.
[2] 白如江,冷伏海.k-clique社区知识创新演化方法研究[J].图书情报工作,2013,57(17):94-99.
[3] RITZHAUPT A D. An investigation of distance education in North American research literature using co-word analysis[J]. International review of research in open & distance learning, 2010, 11(1):37-60.
[4] 程齐凯,王晓光.一种基于共词网络社区的科研主题演化分析框架[J].图书情报工作,2013,57(8):91-96.
[5] 王效岳, 刘自强, 白如江,等. 基于基金项目数据的研究前沿主题探测方法[J]. 图书情报工作, 2017, 61(13):87-98.
[6] 李湘东, 张娇, 袁满. 基于LDA模型的科技期刊主题演化研究[J]. 情报杂志, 2014(7):115-121.
[7] 刘自强,王效岳,白如江.多维度视角下学科主题演化可视化分析方法研究[J].中国图书馆学报,2016,42(6):67-84.
[8] 周源,张超,唐杰,等.基于主题变迁的领域发展路径智能化识别[J].图书情报工作, 2018,62(14):62-71.
[9] HAVRE S, HETZLER E, WHITNEY P, et al. ThemeRiver:visualizing thematic changes in large document collections[J]. Visualization & computer graphics IEEE transactions on, 2002, 8(1):9-20.
[10] ROSVALL M,BERGSTROM C T. Mapping change in large networks[J].PlosOne,2010,5(1):e8694.
[11] 王晓光,程齐凯.基于NEViewer的学科主题演化可视化分析[J].情报学报,2013,32(9):900-911.
[12] 牟冬梅,郑晓月,琚沅红,等.学科知识结构揭示模型构建[J].图书情报工作,2017,61(12):6-13.
[13] 郑晓月,牟冬梅,琚沅红,等.学科知识结构揭示流程与方法探究[J].图书情报工作,2017,61(12):14-20.
[14] 牟冬梅,琚沅红,郑晓月,等.基于时间-关键词共现分析的学科动态知识结构研究——以国外图书情报学为例[J].图书情报工作,2017,61(12):21-31.
[15] 郑晓月,牟冬梅,琚沅红,等.学科知识结构主题演化模式研究——以图书情报学领域"计量学"主题为例[J].图书情报工作,2017,61(12):32-41.
[16] KOSTOFF R N,EBERHART H J,TOOTHMAN D R,et al. Database tomography for technical intelligence:comparative roadmaps of the research impact assessment literature and the Journal of the American Chemical Society[J]. Scientiometrics,1997,40(1):103-138.
[17] LANDAUER T K, DUMAIS S T. A solution to Plato's problem:the latent semantic analysis theory of acquisition, induction, and representation of knowledge[J]. Psychological review, 1997, 104(2):211-240.
[18] SHEN C, LI T, DING C H Q. Integrating clustering and multi-document summarization by bi-mixture probabilistic latent semantic analysis (PLSA) with sentence bases[C]//AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2011:914-920.
[19] BLEI D M,Ng A Y,JORDAN M I.Latent Dirichlet allocation[J].The journal of machine learning research,2003(3):993-1022.
[20] SIEVERT C, SHIRLEY K. LDAvis:a method for visualizing and interpreting topics[C]//Proceedings of the workshop on interactive language learning, visualization, and interfaces. Baltimore:Association for Computational Linguistics, 2014:63-70.
[21] CUI W W,LIU S X,LI T,et al.Text flow:towards better understanding of evolving topics in text[J].Transactions on visualization and computer graphics,2011,17(12):2412-2421.
[22] 吴斌,王柏,杨胜畸.基于事件的社会网络演化分析框架[J].软件学报, 2011,22(7):1488-1502.
[23] 钱铁云,李青,许承瑜.面向科技主题发展分段的社区核心圈技术[J].计算机科学与探索, 2010,4(2):170-179.
[24] 赵加奎,林军,陆瑛,等.新媒体在健康传播中的应用现状及对策[J].中国健康教育,2016,32(10):919-921.
[25] 胡蓉,陈惠芳,徐卫国.移动医疗服务中医患互动对患者感知价值的影响——以知识共享为中介变量[J].管理科学,2018,31(3):75-85.
[26] 王雪,石元博,黄越洋.基于Apriori算法的数据挖掘在移动医疗终端系统中的研究[J].数字技术与应用,2017(9):60-61.
[27] 韩正臣,张基栋.基于安卓的诊所预约与健康管理系统的设计与实现[J].信息技术与信息化,2016(12):30-35.
[28] 林静,吴向阳.基于"互联网+"的医疗信息化建设[J].电脑知识与技术,2016,12(23):216-218.
Outlines

/