Research on Selection and Identification of Technical Elements for Patent Technological Evolution Analysis: A Case Study on Nano Fertilizer

  • Li Xiaoman ,
  • Zhang Xuefu ,
  • Song Hongyan ,
  • Sun Wei
Expand
  • Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081

Received date: 2019-05-23

  Revised date: 2019-09-22

  Online published: 2020-03-20

Abstract

[Purpose/significance] Patent is one of the most reliable sources of technical intelligence. By patent analysis, one can realize the mining and the utilization of patent information, and the technology innovation. Technological evolution analysis refers to the process of emergence, development, transfer, change and even annihilation of technology themes. The focus of the current research is to deeply reveal the patent technology information, technical elements are the key to deeply reveal patent technology information.[Method/process] Proposing a method for identifying technical elements based on patent documents for specific fields by analyzing typical patents and feature recognition.[Result/conclusion] Applying our methods to the nano fertilizer field, through the analysis of typical patents, five technical elements are identified:materials, products, methods, functions and usage, and the identification of technical elements is completed based on SAO structure and domain vocabulary. Our methods can serve as a foundation for technological evolution analysis, and display field technical information from multiple perspectives.

Cite this article

Li Xiaoman , Zhang Xuefu , Song Hongyan , Sun Wei . Research on Selection and Identification of Technical Elements for Patent Technological Evolution Analysis: A Case Study on Nano Fertilizer[J]. Library and Information Service, 2020 , 64(6) : 59 -68 . DOI: 10.13266/j.issn.0252-3116.2020.06.008

References

[1] 陈亮,张志强. 技术演化研究方法进展分析[J]. 图书情报工作, 2012, 56(17):59-66.
[2] KERR C I, MORTARA L, PHAAL R, et al. A conceptual model for technology intelligence[J]. International journal of technology intelligence and planning, 2006, 2(1):73-93.
[3] PARK Y, YOON B, LEE S. The idiosyncrasy and dynamism of technological innovation across industries:patent citation analysis[J]. Technology in society, 2005, 27(4):471-485.
[4] ZHANG L. Identifying key technologies in Saskatchewan, Canada:evidence from patent information[J]. World patent information, 2011, 33(4):364-370.
[5] YOON J, KIM K. Detecting signals of new technological opportunities using semantic patent analysis and outlier detection[J]. Scientometrics, 2012, 90(2):445-461.
[6] ZHOU Y, LIN H, LIU Y, et al. A novel method to identify emerging technologies using a semi-supervised topic clustering model:a case of 3D printing industry[J]. Scientometrics, 2019,120(1):1-19.
[7] LI M, PORTER A L, SUOMINEN A. Insights into relationships between disruptive technology/innovation and emerging technology:a bibliometric perspective[J]. Technological forecasting and social change, 2018, 129:285-296.
[8] HE X, MENG X, DONG Y, et al. Demand identification model of potential technology based on SAO structure semantic analysis:the case of new energy and energy saving fields[J]. Technology in society, https://doi.org/10.1016/j.techsoc.2019.02.002
[9] PARK H, YOON J, KIM K. Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining[J]. Scientometrics, 2013, 97(3):883-909.
[10] DING Y. Scientific collaboration and endorsement:network analysis of coauthorship and citation networks[J]. Journal of informetrics, 2011, 5(1):187-203.
[11] CHOI S, KIM H, YOON J, et al. An SAO-based text-mining approach for technology roadmapping using patent information[J]. R&D management, 2013, 43(1):52-74.
[12] YOON J, PARK H, SEO W, et al. Technology opportunity discovery (TOD) from existing technologies and products:a function-based TOD framework[J]. Technological forecasting and social change, 2015, 100:153-167.
[13] 刘小玲,谭宗颖. 基于专利网络的技术演进研究方法探索[J]. 科学学研究, 2013, 31(5):651-656.
[14] 胡正银,方曙,张娴,等. 个性化语义TRIZ构建研究[J]. 图书情报工作, 2015, 59(7):123-131.
[15] 李欣,谢前前,黄鲁成,等. 基于SAO结构语义挖掘的新兴技术演化轨迹研究[J]. 科学学与科学技术管理, 2018, 39(1):17-31.
[16] 陈亮,杨冠灿,张静,等. 面向技术演化分析的多主路径方法研究[J]. 图书情报工作, 2015,59(10):124-130.
[17] 廖列法,勒孚刚. 基于LDA模型和分类号的专利技术演化研究[J]. 现代情报, 2017, 37(5):15-20.
[18] YOON B, PARK Y. Development of new technology forecasting algorithm:hybrid approach for morphology analysis and conjoint analysis of patent information[J]. IEEE transactions on engineering management, 2007, 54(3):588-599.
[19] YOON B, PHAAL R, PROBERT D. Morphology analysis for technology roadmapping:application of text mining[J]. R & D management, 2010, 38(1):51-68.
[20] KIM Y G, SUH J H, SANG C P. Visualization of patent analysis for emerging technology[J]. Expert systems with applications, 2008, 34(3):1804-1812.
[21] YOON J, KIM K. Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks[J]. Scientometrics, 2011, 88(1):213-228.
[22] 汪雪锋,邱鹏君,付芸. 一种新型技术路线图构建研究——基于SAO结构信息[J]. 科学学研究, 2015(8):1134-1140.
[23] HU Z, FANG S, WEI L, et al. An SAO-based approach to technology evolution analysis using patent information:case study-graphene sensors[J]. Journal of data and information science, 2015, 8(3):62-75.
[24] 鲁若愚,银路. 企业技术管理[M]. 北京:高等教育出版社, 2006.
[25] 陈昌曙. 技术哲学引论[M]. 北京:科学出版社, 2012.
[26] 白光祖. 面向技术演化分析的语义化技术结构构建与应用研究[D]. 北京:中国科学院文献情报中心, 2018.
[27] 王敏,银路. 技术演化的集成研究及新兴技术演化[J]. 科学学研究, 2008, 26(3):466-471.
[28] 胡正银,方曙,文奕,等. 面向TRIZ的专利自动分类研究[J]. 现代图书情报技术, 2015(1):66-74.
[29] ALTSHULLER G. 40 principles:TRIZ keys to innovation[M]. Norwood:Technical Innovation Center, Inc., 2002.
[30] 胡正银,方曙,隗玲. 基于SAO的专利技术演化分析[C]/中国科学院成都文献情报中心.贵阳:中国科学院成都文献情报中心,2015:1-18.
[31] 付芸,汪雪锋,李佳,等. 基于SAO结构的创新解决方案遴选研究——以空气净化技术为例[J]. 图书情报工作, 2019, 63(6):75-84.
[32] KIM H B, HYEOK Y J, KIM K S. Semantic SAO network of patents for reusability of inventive knowledge[C]//2012 IEEE international conference on management of innovation & technology. Sanur Bali:IEEE, 2012:510-515.
[33] CHOI S, PARK H, KANG D, et al. An SAO-based text mining approach to building a technology tree for technology planning[J]. Expert systems with applications, 2012, 39(13):11443-11455.
[34] 翟东升,夏军,张杰,等. 基于专利特征抽取的技术树构建方法研究[J]. 情报学报, 2015, 34(7):717-724.
[35] WANG X, QIU P, ZHU D, et al. Identification of technology development trends based on subject-action-object analysis:the case of dye-sensitized solar cells[J]. Technological forecasting & social change, 2015, 98:24-46.
[36] 李倩. 基于专利的新兴技术弱信号识别方法研究[D]. 北京:北京工业大学, 2014.
[37] 郭俊芳,汪雪锋,李乾瑞,等. 一种新型的技术形态识别方法——基于SAO语义挖掘方法[J]. 科学学研究, 2016, 34(1):13-21.
[38] 王朝霞,邱清盈,冯培恩,等. 机械产品专利技术方案信息抽取方法[J]. 机械工程学报, 2009, 45(10):198-206.
[39] 张艳. 汉语句法分析的理论、方法的研究及其应用[D]. 北京:中国科学院自动化研究所:2003.
[40] 王秀艳,崔雷. 采用混合方法抽取生物医学实体间语义关系[J]. 现代图书情报技术, 2013(3):77-82.
[41] 张夫道,赵秉强,张骏,等. 纳米肥料研究进展与前景[J]. 植物营养与肥料学报, 2002, 8(2):254-255.
Outlines

/