Topic Mining and Evolution Analysis of Social Development in Spring and Autumn Period——A Case of Studying Zuo Zhuan

  • He Lin ,
  • Qiao Yue ,
  • Liu Xueqi
Expand
  • College of Information Science & Technology, Nanjing Agricultural University, Nanjing 210095

Received date: 2019-07-10

  Revised date: 2019-10-26

  Online published: 2020-04-05

Abstract

[Purpose/significance] In the context of the rapid development of humanistic computing, this paper uses text mining technology to cluster Zuo Zhuan, which provides a reference for quantitative analysis such as topic mining in Spring and Autumn Period, and has a certain reference significance for multi-dimensional reorganization and analysis of classical texts. [Method/process] This paper uses text clustering method to analyze Zuo Zhuan quantitatively in many dimensions, breaking the linear and chronological record order of Zuo Zhuan. Firstly, using the word matching algorithm, the corpus of each vassal state is obtained from the characteristic words of Zuo Zhuan. Then the LDA topic model is used to process the characteristic words of Zuo Zhuan and the corpuses of selected vassal states. Finally, the topic strength calculation is performed in combination with the time information. [Result/conclusion] The experimental results show that the development of the Spring and Autumn Society and the vassal states can be explored according to the theme-word distribution. The development trend of the Spring and Autumn Society and various vassal states can be summarized through the theme intensity curve. Through the LDA topic clustering method, the development of war, politics and diplomacy in the whole society and different vassal states in the Spring and Autumn Period is finally revealed.

Cite this article

He Lin , Qiao Yue , Liu Xueqi . Topic Mining and Evolution Analysis of Social Development in Spring and Autumn Period——A Case of Studying Zuo Zhuan[J]. Library and Information Service, 2020 , 64(7) : 30 -38 . DOI: 10.13266/j.issn.0252-3116.2020.07.004

References

[1] 胡悦融,马青,刘佳派,等.数字人文背景下"远距离可视化阅读"探析[J].图书馆论坛,2017,37(2):1-9.
[2] 梁晨,董浩,李中清.量化数据库与历史研究[J].历史研究,2015(2):113-128,191-192.
[3] PALEY W B. TextArc:showing word frequency and distribution in text[C]//IEEE symposium on information visualization. Poster Compendium:IEEE CS Press,2002:148-165.
[4] HORTON T, TAYLOR K, YU B, et al. "Quite right, dear and interesting":seeking the sentimental in nineteenth century American fiction[EB/OL].[2019-06-20]. http://www.csdl.tamu.edu/~furuta/courses/06c_689dh/dh06readings/DH06-081-082.pdf.
[5] MORETTI F. Distant reading[M]. London:Verso Books,2013:211-221.
[6] MICHEL J B, SHEN Y K, AIDEN A P, et al. Quantitative analysis of culture using millions of digitized books[J]. Science, 2011, 331(6014):176-182.
[7] CHEN J W,BOROVSKY Z,KAWANO Y,et al. The Shi Shuo Xin Yu as data visualization[J].Early medieval China,2014(S0):23-59.
[8] CHEN J W. East Asian studies macroscope[EB/OL].[2019-06-20].http://macroscope.cdh.ucla.edu.
[9] 欧阳剑.大规模古籍文本在中国史定量研究中的应用探索[J].大学图书馆学报,2016,34(3):5-15.
[10] 欧阳剑.面向数字人文研究的大规模古籍文本可视化分析与挖掘[J].中国图书馆学报,2016,42(2):66-80.
[11] ALLEN C, LUO H L, MURDOCK J, et al. Topic modeling the hàn di?n ancient classics[J/OL].[2019-06-20].https://arxiv.xilesou.top/ftp/arxiv/papers/1702/1702.00860.pdf.
[12] NICHOLS R, SLINGERLAND E, NIELBO K, et al. Modeling the contested relationship between Analects, Mencius, and Xunzi:preliminary evidence from a machine-learning approach[J]. The journal of Asian studies, 2018, 77(1):19-57.
[13] 姜明波.近十年国内《左传》研究综述[J].华夏文化,2013(2):58-61.
[14] 邓勇.王霸:正义与秩序[D].武汉:武汉大学,2007.
[15] 刘巍.《左传》叙战语篇研究[D].长春:吉林大学,2013.
[16] 张君蕊.《左传》礼制与"三礼"比较研究[J].中国典籍与文化,2017(3):94-109.
[17] 王竹波.论《左传》"以礼解经"[J].现代哲学,2012(4):105-111.
[18] 李佳艺.从《左传》中探究鲁隐公人物形象[J].名作欣赏,2017(17):16-17.
[19] 刘妍彤.《左传》郑庄公人物形象之解析[J].文化学刊,2018(3):221-222.
[20] 吕丽,张倩倩,张敬.浅议《左传》外交辞令的特色[J].名作欣赏,2013(17):108-109.
[21] 王立.婉约有致、辞强不激的语体风格——《左传》外交辞令之探究[J].汉字文化,2011(3):55-58.
[22] 许超,陈小荷.《左传》中的春秋社会网络分析[J].南京师范大学文学院学报,2014(1):179-184.
[23] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003,3(1):993-1022.
[24] SCHMIDT B M. Words alone:dismantling topic models in the humanities[J]. Journal of digital humanities, 2012, 2(1):49-65.
[25] UNDERWOOD T. What kinds of "topics" does topic modeling actually produce[EB/OL].[2019-06-05]. http://tedunderwood.com/2012/04/01/what-kinds-oftopics-does-topic-modeling-actually-produce/.
[26] GRIFFITHS T L, STEYVERS M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences, 2004, 101(S1):5228-5235.
[27] 崔凯.基于LDA的主题演化研究与实现[D].长沙:国防科学技术大学,2010.
[28] 曲靖野,陈震,胡轶楠.共词分析与LDA模型分析在文本主题挖掘中的比较研究[J].情报科学,2018,36(2):18-23.
[29] 杨伯峻,徐提.春秋左传词典[M].北京:中华书局,1985.
Outlines

/