Research Progress in Community Detection of Online Social Networks

  • Zhang Haitao ,
  • Zhou Honglei ,
  • Zhang Xinrui ,
  • Sun Tong
Expand
  • 1 Management School of Jilin University, Changchun 130022;
    2 The Information Resource Research Center of Jilin University, Changchun 130022

Received date: 2019-11-12

  Revised date: 2020-02-07

  Online published: 2020-05-05

Abstract

[Purpose/significance] Taking online social network as the research object, and through the literature combing to accurately capture the development trend and research hotspots of community discovery, and exploring how to mine hidden communities in large-scale social networks, which has theoretical and practical significance. [Method/process] Using CNKI database, Web of Science core collection and related international conference documents as data sources. The CiteSpace visual analysis tool was used to quantitatively study hotspot keywords, topic evolution paths and co-cited documents. And the topic research content was reviewed from 3 dimensions:community discovery method, algorithm implementation and application practice. [Result/conclusion] There is still much room for development in the current research field. In the future, we should pay attention to optimization and innovation of algorithms, differentiation and expansion of application scenarios, and cross-disciplinary research on interdisciplinary knowledge and cutting-edge technology methods.

Cite this article

Zhang Haitao , Zhou Honglei , Zhang Xinrui , Sun Tong . Research Progress in Community Detection of Online Social Networks[J]. Library and Information Service, 2020 , 64(9) : 142 -152 . DOI: 10.13266/j.issn.0252-3116.2020.09.016

References

[1] 方滨兴,贾焰,韩毅.社交网络分析核心科学问题、研究现状及未来展望[J].中国科学院院刊,2015,30(2):187-199.
[2] 程学旗,沈华伟.复杂网络的社区结构[J].复杂系统与复杂性科学,2011,8(1):57-70.
[3] 吴小兰,章成志.学术社交媒体视角下学科知识流动规律研究——以科学网为例[J].数据分析与知识发现,2019,3(4):107-116.
[4] 舒文琛,周恩国,李岱峰,等.基于合著网络社区发现的情报学研究主题演化分析[J].情报科学,2020,38(1):75-81.
[5] NEWNAN M E J. Networks[M]. New York:Oxford University Press, 2018.
[6] 杨楠,弓丹志,李忺,等.Web社区发现技术综述[J].计算机研究与发展,2005(3):439-447.
[7] ZHOU L, LU K, YANG P, et al. An approach for overlapping and hierarchic al community detection in social networks based on coalition formation game theory[J]. Expert systems with applications, 2015, 42(24):9634-9646.
[8] YANG X S. A new metaheuristic bat-inspired algorithm[C]//Nature inspired cooperative strategies for optimization. Berlin:Springer-Verlag,2010:65-74.
[9] GIRVAN M, NEWNAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826.
[10] NEWNAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical review E, 2004, 69(2):1-15.
[11] RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences, 2004, 101(9):2658-2663.
[12] DANON L, DIAZ-GUILERA A, DUCH J, et al. Comparing community structure identification[J]. Journal of statistical mechanics:theory and experiment, 2005, 2005(9):1-10.
[13] 王莉,程学旗.在线社会网络的动态社区发现及演化[J].计算机学报,2015,38(2):219-237.
[14] 李建华,汪晓锋,吴鹏.基于局部优化的社区发现方法研究现状[J].中国科学院院刊,2015,30(2):238-247,180.
[15] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical review E, 2007, 76(3):1-11.
[16] ROSVALL M, BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the national academy of sciences, 2008, 105(4):1118-1123.
[17] PALLA G, DERÉNYI I, FARKAS I, et al.Uncovering the overlapping community structure of complex networks in nature and society[J].Nature, 2005, 435(7043):814-818.
[18] AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307):761-764.
[19] GREGORY S. Finding overlapping communities in networks by label propagation[J]. New journal of physics, 2010, 12(10):1-26.
[20] 吴小兰,章成志.基于贡献度的多标签传播重叠社区发现研究[J].情报学报,2015,34(9):949-957.
[21] 刘世超,朱福喜,甘琳.基于标签传播概率的重叠社区发现算法[J].计算机学报,2016,39(4):717-729.
[22] 辛宇,杨静,谢志强.一种面向语义重叠社区发现的Link-Block算法[J].软件学报,2016,27(2):363-380.
[23] LANCICHINETTI A, RADICCHI F, RAMASCO J J, et al. Finding statistically significant communities in networks[J]. PloS one, 2011, 6(4):1-18.
[24] XIE J, SZYMANSKI B K. LabelRank:a stabilized label propagation algorithm for community detection in networks[C]//The 2013 IEEE 2nd international network science workshop. New York:IEEE, 2013:138-143.
[25] ZHAO Z, LI C, ZHANG X, et al. An incremental method to detect communities in dynamic evolving social networks[J]. Knowledge-based systems, 2019, 163:404-415.
[26] 何婧,王志晓,候梦男,等.基于拓扑势的增量式动态社区发现方法[J].计算机工程与设计,2019,40(1):45-52.
[27] LIN Y R, SUN J, CASTRO P, et al. Metafac:community discovery via relational hypergraph factorization[C]//Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2009:527-536.
[28] CHEN J, SAAD Y. Dense subgraph extraction with application to community detection[J]. IEEE transactions on knowledge and data engineering, 2010, 24(7):1216-1230.
[29] GOPALAN P K, BLEI D M. Efficient discovery of overlapping communities in massive networks[J].Proceedings of the National Academy of Sciences, 2013, 110(36):14534-14539.
[30] 张琴,陈红梅,封云飞.一种基于粗糙集和密度峰值的重叠社区发现方法[J/OL].[2020-02-01]. http://kns.cnki.net/kcms/detail/50.1075.tp.20200106.0943.007.html.
[31] XIA Z, BU Z. Community detection based on a semantic network[J]. Knowledge-based systems, 2012, 26:30-39.
[32] ANWAR M M, LIU C, LI J. Discovering and tracking query oriented active online social groups in dynamic information network[J]. World Wide Web, 2019, 22(4):1819-1854.
[33] LIU W, YUE K, WU H, et al. Markov-network based latent link analysis for community detection in social behavioral interactions[J]. Applied intelligence, 2018, 48(8):2081-2096.
[34] TANG J, ZHANG R, YAO Y, et al. An adaptive discrete particle swarm optimization for influence maximization based on network community structure[J]. International journal of modern physics C, 2019, 30(6):1-21.
[35] YANG L, CAO X, HE D, et al. Modularity based community detection with deep learning[C]//Proceedings of the Twenty-Fifth international joint conference on artificial intelligence (IJCAI-16).New York:AAAI Press.2016:2252-2258.
[36] SPERLI G. A deep learning based community detection approach[C]//Association for Computing Machinery. Proceedings of the 34th ACM/SIGAPP symposium on applied computing. New York:ACM, 2019:1107-1110.
[37] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics:theory and experiment, 2008,2008(10):P10008.
[38] 张海涛,刘雅姝,张枭慧,等.基于模块度的话题发现及网民情感波动研究——以新浪微博"中美间贸易摩擦"话题为例[J].图书情报工作,2019,63(4):6-14.
[39] CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. Physical review E, 2004, 70(6):066111.
[40] ZHU X J, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions[C]//Proceedings of the 20th international conference on machine learning. Washington DC:ICML.2003:912-919.
[41] 邢翔瑞.Graph特征提取方法:谱聚类(Spectral Clustering)详解[EB/OL].[2019-11-10]. https://blog.csdn.net/weixin_36474809/article/details/89669623?utm_source=app.
[42] MA T, WANG Y, TANG M, et al. LED:a fast overlapping communities detection algorithm based on structural clustering[J]. Neurocomputing, 2016, 207:488-500.
[43] 张军祥,李书琴,刘斌.基于平滑L1范数的深度稀疏自动编码器社区识别算法[J/OL].[2020-02-05]. https://doi.org/10.19734/j.issn.1001-3695.2018.09.0743.
[44] 刘冰玉,王翠荣,王聪,等.基于动态主题模型融合多维数据的微博社区发现算法[J].软件学报,2017,28(2):246-261.
[45] 田博,凡玲玲.基于交互行为的在线社会网络社区发现方法研究[J].情报杂志,2016,35(11):183-188.
[46] GU K, WANG L, YIN B. Social community detection and message propagation scheme based on personal willingness in social network[J]. Soft computing, 2019, 23(15):6267-6285.
[47] LI C, BAI J, DU S, et al. Combining tag correlation and interactive behaviors for community discovery[J]. The computer journal, 2018, 62(5):785-800.
[48] 李纲,陈思菁,毛进,等.自然灾害事件微博热点话题的时空对比分析[J].数据分析与知识发现,2019,3(11):1-15.
[49] XINCHANG K, VILAKONE P, PARK D S. Movie recommendation algorithm using social network analysis to alleviate cold-start problem[J]. Journal of information processing systems, 2019, 15(3):616-631.
[50] 张继东,蔡雪.基于社区划分和用户相似度的好友信息服务推荐研究[J].情报理论与实践,2019,42(4):151-157,165.
[51] CHEN Y C, ZHU W Y, PENG W C, et al. CIM:Community-based influence maximization in social networks[J]. ACM transactions on intelligent systems and technology, 2014, 5(2):1-31.
[52] KOVÁCS I A, LUCK K, SPIROHN K, et al. Network-based prediction of protein interactions[J]. Nature communications, 2019, 10(1):1-8.
[53] 涂存超,杨成,刘知远,等.网络表示学习综述[J].中国科学:信息科学,2017,47(8):980-996.
[54] 丁永刚,张雨琴,付强,等.基于SOM神经网络和排序因子分解机的图书资源精准推荐[J].情报理论与实践,2019,42(9):133-138,170.
Outlines

/