[1] 方滨兴,贾焰,韩毅.社交网络分析核心科学问题、研究现状及未来展望[J].中国科学院院刊,2015,30(2):187-199.
[2] 程学旗,沈华伟.复杂网络的社区结构[J].复杂系统与复杂性科学,2011,8(1):57-70.
[3] 吴小兰,章成志.学术社交媒体视角下学科知识流动规律研究——以科学网为例[J].数据分析与知识发现,2019,3(4):107-116.
[4] 舒文琛,周恩国,李岱峰,等.基于合著网络社区发现的情报学研究主题演化分析[J].情报科学,2020,38(1):75-81.
[5] NEWNAN M E J. Networks[M]. New York:Oxford University Press, 2018.
[6] 杨楠,弓丹志,李忺,等.Web社区发现技术综述[J].计算机研究与发展,2005(3):439-447.
[7] ZHOU L, LU K, YANG P, et al. An approach for overlapping and hierarchic al community detection in social networks based on coalition formation game theory[J]. Expert systems with applications, 2015, 42(24):9634-9646.
[8] YANG X S. A new metaheuristic bat-inspired algorithm[C]//Nature inspired cooperative strategies for optimization. Berlin:Springer-Verlag,2010:65-74.
[9] GIRVAN M, NEWNAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826.
[10] NEWNAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical review E, 2004, 69(2):1-15.
[11] RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences, 2004, 101(9):2658-2663.
[12] DANON L, DIAZ-GUILERA A, DUCH J, et al. Comparing community structure identification[J]. Journal of statistical mechanics:theory and experiment, 2005, 2005(9):1-10.
[13] 王莉,程学旗.在线社会网络的动态社区发现及演化[J].计算机学报,2015,38(2):219-237.
[14] 李建华,汪晓锋,吴鹏.基于局部优化的社区发现方法研究现状[J].中国科学院院刊,2015,30(2):238-247,180.
[15] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical review E, 2007, 76(3):1-11.
[16] ROSVALL M, BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the national academy of sciences, 2008, 105(4):1118-1123.
[17] PALLA G, DERÉNYI I, FARKAS I, et al.Uncovering the overlapping community structure of complex networks in nature and society[J].Nature, 2005, 435(7043):814-818.
[18] AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307):761-764.
[19] GREGORY S. Finding overlapping communities in networks by label propagation[J]. New journal of physics, 2010, 12(10):1-26.
[20] 吴小兰,章成志.基于贡献度的多标签传播重叠社区发现研究[J].情报学报,2015,34(9):949-957.
[21] 刘世超,朱福喜,甘琳.基于标签传播概率的重叠社区发现算法[J].计算机学报,2016,39(4):717-729.
[22] 辛宇,杨静,谢志强.一种面向语义重叠社区发现的Link-Block算法[J].软件学报,2016,27(2):363-380.
[23] LANCICHINETTI A, RADICCHI F, RAMASCO J J, et al. Finding statistically significant communities in networks[J]. PloS one, 2011, 6(4):1-18.
[24] XIE J, SZYMANSKI B K. LabelRank:a stabilized label propagation algorithm for community detection in networks[C]//The 2013 IEEE 2nd international network science workshop. New York:IEEE, 2013:138-143.
[25] ZHAO Z, LI C, ZHANG X, et al. An incremental method to detect communities in dynamic evolving social networks[J]. Knowledge-based systems, 2019, 163:404-415.
[26] 何婧,王志晓,候梦男,等.基于拓扑势的增量式动态社区发现方法[J].计算机工程与设计,2019,40(1):45-52.
[27] LIN Y R, SUN J, CASTRO P, et al. Metafac:community discovery via relational hypergraph factorization[C]//Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2009:527-536.
[28] CHEN J, SAAD Y. Dense subgraph extraction with application to community detection[J]. IEEE transactions on knowledge and data engineering, 2010, 24(7):1216-1230.
[29] GOPALAN P K, BLEI D M. Efficient discovery of overlapping communities in massive networks[J].Proceedings of the National Academy of Sciences, 2013, 110(36):14534-14539.
[30] 张琴,陈红梅,封云飞.一种基于粗糙集和密度峰值的重叠社区发现方法[J/OL].[2020-02-01]. http://kns.cnki.net/kcms/detail/50.1075.tp.20200106.0943.007.html.
[31] XIA Z, BU Z. Community detection based on a semantic network[J]. Knowledge-based systems, 2012, 26:30-39.
[32] ANWAR M M, LIU C, LI J. Discovering and tracking query oriented active online social groups in dynamic information network[J]. World Wide Web, 2019, 22(4):1819-1854.
[33] LIU W, YUE K, WU H, et al. Markov-network based latent link analysis for community detection in social behavioral interactions[J]. Applied intelligence, 2018, 48(8):2081-2096.
[34] TANG J, ZHANG R, YAO Y, et al. An adaptive discrete particle swarm optimization for influence maximization based on network community structure[J]. International journal of modern physics C, 2019, 30(6):1-21.
[35] YANG L, CAO X, HE D, et al. Modularity based community detection with deep learning[C]//Proceedings of the Twenty-Fifth international joint conference on artificial intelligence (IJCAI-16).New York:AAAI Press.2016:2252-2258.
[36] SPERLI G. A deep learning based community detection approach[C]//Association for Computing Machinery. Proceedings of the 34th ACM/SIGAPP symposium on applied computing. New York:ACM, 2019:1107-1110.
[37] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics:theory and experiment, 2008,2008(10):P10008.
[38] 张海涛,刘雅姝,张枭慧,等.基于模块度的话题发现及网民情感波动研究——以新浪微博"中美间贸易摩擦"话题为例[J].图书情报工作,2019,63(4):6-14.
[39] CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. Physical review E, 2004, 70(6):066111.
[40] ZHU X J, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions[C]//Proceedings of the 20th international conference on machine learning. Washington DC:ICML.2003:912-919.
[41] 邢翔瑞.Graph特征提取方法:谱聚类(Spectral Clustering)详解[EB/OL].[2019-11-10]. https://blog.csdn.net/weixin_36474809/article/details/89669623?utm_source=app.
[42] MA T, WANG Y, TANG M, et al. LED:a fast overlapping communities detection algorithm based on structural clustering[J]. Neurocomputing, 2016, 207:488-500.
[43] 张军祥,李书琴,刘斌.基于平滑L1范数的深度稀疏自动编码器社区识别算法[J/OL].[2020-02-05]. https://doi.org/10.19734/j.issn.1001-3695.2018.09.0743.
[44] 刘冰玉,王翠荣,王聪,等.基于动态主题模型融合多维数据的微博社区发现算法[J].软件学报,2017,28(2):246-261.
[45] 田博,凡玲玲.基于交互行为的在线社会网络社区发现方法研究[J].情报杂志,2016,35(11):183-188.
[46] GU K, WANG L, YIN B. Social community detection and message propagation scheme based on personal willingness in social network[J]. Soft computing, 2019, 23(15):6267-6285.
[47] LI C, BAI J, DU S, et al. Combining tag correlation and interactive behaviors for community discovery[J]. The computer journal, 2018, 62(5):785-800.
[48] 李纲,陈思菁,毛进,等.自然灾害事件微博热点话题的时空对比分析[J].数据分析与知识发现,2019,3(11):1-15.
[49] XINCHANG K, VILAKONE P, PARK D S. Movie recommendation algorithm using social network analysis to alleviate cold-start problem[J]. Journal of information processing systems, 2019, 15(3):616-631.
[50] 张继东,蔡雪.基于社区划分和用户相似度的好友信息服务推荐研究[J].情报理论与实践,2019,42(4):151-157,165.
[51] CHEN Y C, ZHU W Y, PENG W C, et al. CIM:Community-based influence maximization in social networks[J]. ACM transactions on intelligent systems and technology, 2014, 5(2):1-31.
[52] KOVÁCS I A, LUCK K, SPIROHN K, et al. Network-based prediction of protein interactions[J]. Nature communications, 2019, 10(1):1-8.
[53] 涂存超,杨成,刘知远,等.网络表示学习综述[J].中国科学:信息科学,2017,47(8):980-996.
[54] 丁永刚,张雨琴,付强,等.基于SOM神经网络和排序因子分解机的图书资源精准推荐[J].情报理论与实践,2019,42(9):133-138,170.