[1] ILAKIVA P, SUMATHI M, KARTHIK S. A survey on semantic similarity between words in semantic Web[C]//International conference on radar, communication and computing. Tiruvannamalai:IEEE, 2012:213-216.
[2] 沙勇忠,史忠贤.基于语义相似度的公共危机事件案例检索方法[J].情报资料工作, 2014(6):78-81.
[3] LIU L, YU Z. An improved knowledge push method based on semantic similarities[C]//Fourth international conference on multimedia information networking and security. Nanjing:IEEE, 2012:378-380.
[4] 王道平,赵耀,刘涛.敏捷供应链中知识服务检索的语义相似度问题研究[J].图书情报工作,2010,54(16):78-81.
[5] KULMANOV M, HOEHNDORF R. Evaluating the effect of annotation size on measures of semantic similarity[J]. Journal of biomedical semantics, 2017, 8(1):7.
[6] 李杰,初砚硕,程亮,等.基于疾病本体的疾病相似性计算方法[J].生物化学与生物物理进展,2015, 42(2):115-122.
[7] NCBO BioPortal[EB/OL].[2019-08-08].https://bioportal.bioontology.org/.
[8] SCHRIML L, ARZE C, NADENDLA S, et al. Disease ontology:a backbone for disease semantic integration[J]. Nucleic acids research, 2012, 40(D1):D940-D946.
[9] 朱玲,杨峰, HE Y,等.基本形形式化本体重要概念解析及对中医领域本体构建的提示[J].中国数字医学,2018,13(2):27-30,56.
[10] 陈云志.肝炎本体构建及语义相似度研究[D].杭州:浙江大学, 2017.
[11] JORGE M. An overview of textual semantic similarity measures based on Web intelligence[J]. Artificial intelligence review, 2012, 42(4):935-943.
[12] 秦春秀,赵捧未,刘怀亮.词语相似度计算研究[J].情报理论与实践,2007,30(1):105-108.
[13] SPAGNOLA S, LAGOZE C. Edge dependent pathway scoring for calculating semantic similarity in conceptnet[C]//Proceedings of the ninth international conference on computational semantics. Tilburg:Association for Computational Linguistics, 2011:385-389.
[14] CILIBRASI R, VITANYI M. The google similarity distance[J]. IEEE transactions on knowledge and data engineering, 2007,19(3):370-383.
[15] 李峰,李芳.中文词语语义相似度计算——基于《知网》2000[J].中文信息学报,2007(3):99-105.
[16] 刘杰,郭宇,汤世平,等.基于《知网》2008的词语相似度计算[J].小型微型计算机系统,2015,36(8):1728-1733.
[17] NGUYEN T, CONRAD S. A semantic similarity measure between nouns based on the structure of wordnet[C]//Proceedings of international conference on information integration and Web-based applications & services. Vienna:ACM, 2013:605-619.
[18] LIU X, ZHOU Y, ZHENG R. Measuring semantic similarity in wordnet[C]//International conference on machine learning and cybernetics. Hong Kong:IEEE, 2007:3431-3435.
[19] 张军亮,朱学芳.基于《农业大词典》的农业概念簇表示研究[J].情报科学,2013,31(7):15-17,22.
[20] 陈二静,姜恩波.文本相似度计算方法研究综述[J].数据分析与知识发现,2017,1(6):1-11.
[21] AMINUL I, DIANA I. Semantic text similarity using corpus-based word similarity and string similarity[J/OL].ACM Transactions on knowledge discovery from data, 2008,2(2):10.[2019-08-08]. http://www.researchgate.net/publication/220345072.
[22] CHEN Q, YAO L, YANG J. Short text classification based on LDA topic model[C]//International conference on audio, language and image processing. Shanghai:IEEE, 2016:749-753.
[23] FAROUK M. Sentence semantic similarity based on word embedding and WordNet[C]//13th international conference on computer engineering and systems. Cairo:IEEE, 2018:33-37.
[24] 李琳,李辉.一种基于概念向量空间的文本相似度计算方法[J].数据分析与知识发现,2018,2(5):48-58.
[25] 詹志建,杨小平.一种基于复杂网络的短文本语义相似度计算[J].中文信息学报,2016,30(4):71-80,89.
[26] 李慧.词语相似度算法研究综述[J].现代情报,2015,35(4):172-177.
[27] BOLLEGALA D, ISHIZUKA M, MATSUO Y. Measuring semantic similarity between words using web search engines[C]//International conference on World Wide Web. Banff:ACM, 2007:757-766.
[28] ZHU G, IGLESIAS C. Computing semantic similarity of concepts in knowledge graphs[J]. IEEE transactions on knowledge and data engineering, 2017,29(1):72-85.
[29] RADAR, MILI H, BICHNELL E, et al. Development and application of a metric on semantic nets[J]. IEEE transaction on systems, man, and cybernetics. 1989,19(1):17-30.
[30] BANU A, FATIMA S S, KHAN K U R. A new ontology-based semantic similarity measure for concepts subsumed by multiple super concepts[J]. International journal of Web applications, 2014, 6(1):14-22.
[31] ZHU X, LI F, CHEN H, et al. An efficient path computing model for measuring semantic similarity using edge and density[J]. Knowledge and information systems, 2018, 55(1):79-111.
[32] 李文清,孙新,张常有,等.一种本体概念的语义相似度计算方法[J].自动化学报,2012,38(2):229-235.
[33] SAHNI L, SEHGAL A, KOCHAR A, et al, A novel approach to find semantic similarity measure between words[C]//2nd international symposium on computational and business intelligence. New Delhi:IEEE, 2014:89-92.
[34] YANG Y, PING Y. An Ontology-based semantic similarity computation model[C]//IEEE international conference on big data and smart computing. Shanghai:IEEE, 2018:561-564.
[35] PESQUITA C, FARIA D, FALCÃO A O, et al. Semantic similarity in biomedical ontologies[J]. PLoS computational biology, 2009, 5(7):e1000443.
[36] DUTTA P, BASU S, KUNDU M. A new hybrid semantic similarity measure using information content and topological features of the Gene Ontology graph[C]//International conference on computer communication and informatics. Coimbatore:IEEE, 2017:1-5.
[37] JEONG J, CHEN X. A new semantic functional similarity over gene ontology[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2015, 12(2):322-334.
[38] DUTTA P, BASU S, KUNDU M. Assessment of semantic similarity between proteins using information content and topological properties of the gene ontology graph[J]. IEEE/ACM transactions on computational biology & bioinformatics, 2018,15(3):839-849.
[39] AL-MUBAID H, NGUYEN H. Using MEDLINE as standard corpus for measuring semantic similarity in the biomedical domain[C]//Sixth IEEE international symposium on bioInformatics and bioEngineering. Arlington:IEEE, 2006:315-318.
[40] 李文庆. 基于医学领域本体的语义相似度算法研究[D].太原:太原理工大学,2013.
[41] ZHANG J, ZHU X, ZHU G. Designing an automated FAQ answering system for farmers based on hybrid strategies[J].Chinese journal of library and information science,2012,5(4):21-36.
[42] BLEI D, NG A, JORDAN M I, et al. Latent dirichlet allocation[J]. Journal of machine learning research, 2003,3(3):993-1022.
[43] 何伟林,谢红玲,奉国和.潜在狄利克雷分布模型研究综述[J].信息资源管理学报,2018,8(1):55-64.
[44] 刘铭,王晓龙,刘远超.基于语义的高维数据聚类技术[J].电子学报,2009,37(5):925-929.
[45] Disease ontology[EB/OL].[2019-08-08].http://www.disease-ontology.org/.
[46] 百科名医[EB/OL].[2019-08-08].http://www.baikemy.com/.
[47] Python[EB/OL].[2019-08-08].http://www.python.org/.
[48] HanLP[EB/OL].[2019-08-08].http://hanlp.linrunsoft.com/.
[49] NumPy[EB/OL].[2019-08-08].http://www.numpy.org/.
[50] gensim:Topic modelling for humans[EB/OL].[2019-08-08].http://radimrehurek.com/gensim/.
[51] 周爱明. 图书情报领域实用多元统计[M].郑州:郑州大学出版社,2017.
[52] 关鹏,王曰芬.科技情报分析中LDA主题模型最优主题数确定方法研究[J].现代图书情报技术,2016(9):42-50.