A Review of the Application of Knowledge Graph in Entity Retrieval

  • Ruan Guangce ,
  • Fan Yuhang ,
  • Xia Lei
Expand
  • 1 Department of Information Management, Faculty of Economics and Management, East China Normal University, Shanghai 200241;
    2 Shanghai Library, Shanghai 200031

Received date: 2019-11-06

  Revised date: 2020-03-05

  Online published: 2020-07-20

Abstract

[Purpose/significance] To sort out the research context and key points of entity retrieval based on knowledge graph, and explore the future development direction of this field. [Method/process] This paper firstly gave the formal definition, the implementation path and main data sources of entity retrieval on knowledge graph. Then, according to the retrieval task, the application of entity retrieval was divided into match retrieval, extended retrieval and recommended recommendation, and the implementation methods were summarized. [Result/conclusion] With the development of the application, the research of entity retrieval based on knowledge graph began to focus on how to improve the user's retrieval experience and provide a variety of retrieval results. The future research will be carried out on the interpretability of retrieval results, cross domain knowledge graph retrieval and so on.

Cite this article

Ruan Guangce , Fan Yuhang , Xia Lei . A Review of the Application of Knowledge Graph in Entity Retrieval[J]. Library and Information Service, 2020 , 64(14) : 126 -135 . DOI: 10.13266/j.issn.0252-3116.2020.14.013

References

[1] HUANG J Z, DING S Q, WANG H F, et al. Learning to recommend related entities with serendipity for Web search users[J]. ACM transactions on Asian and low-resource language information processing, 2018, 17(3):1-22.
[2] POUND J, MIKA P, ZARAGOZA H. Ad-Hoc object retrieval in the Web of data[C]//Proceedings of the 19th international conference on World Wide Web. New York:ACM Press, 2010:771-780.
[3] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO:a core of semantic knowledge[C]//Proceedings of the 16th international conference on World Wide Web. New York:ACM Press, 2007:697-706.
[4] HOFFART J, SUCHANEK F M, BERBERICH K, et al. YAGO2:a spatially and temporally enhanced knowledge base from Wikipedia[J]. Artificial intelligence, 2013,194(1):28-61.
[5] MAHDISOLTANI F, BIEGA J, SUCHANEK F. YAGO3:a knowledge base from multilingual Wikipedias[EB/OL].[2020-05-11]. https://hal-imt.archives-ouvertes.fr/hal-01699874/document.
[6] AUER S, BIZER C, KOBILAROV G, et al. DBpedia:a nucleus for a web of open data[C]//Proceedings of the 6th international semantic Web conference. Berlin:Springer-Verlag, 2007:722-735.
[7] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD international conference on management of data. New York:ACM Press, 2008:1247-1250.
[8] CARLSON A, BETTERIDGE J, KISIEL B, et al. Toward an architecture for never-ending language learning[C]//Proceedings of the 24th AAAI conference on artificial intelligence. Menlo Park:AAAI, 2010:1306-1313.
[9] WU W, LI H, WANG H, et al. Probase:a probabilistic taxonomy for text understanding[C]//Proceedings of the 2012 ACM SIGMOD international conference on management of data. New York:ACM Press, 2012:481-492.
[10] 徐增林,盛泳潘,贺丽荣,等.知识图谱技术综述[J].电子科技大学学报,2016,45(4):589-606.
[11] 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600.
[12] 林海伦,王元卓,贾岩涛,等.面向网络大数据的知识融合方法综述[J].计算机学报,2017,40(1):1-27.
[13] QUILLIAN M R. Word concepts:a theory and simulation of some basic semantic capabilities[J].Behavioral science, 1967,12(5):410-430.
[14] SIMMONS R F.Natural language question answering systems:1969[J].Communications of the ACM, 1970,13(1):15-30.
[15] BIZER C, HEATH T, BERNERS-LEE T. Linked data-the story so far[J].International journal on semantic Web and information systems, 2009,5(3):1-12.
[16] DONG X L, GABRILOVICH E, HEITZ G, et al. Knowledge vault:a Web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM Press, 2014:601-610.
[17] LAMURIAS A, FERREIRA J D, CLARKE L A, et al. Generating a tolerogenic cell therapy knowledge graph from literature[J]. Frontiers in immunology, 2017,8(11):1-12.
[18] MUNGALL C J, MCMURRY J A, KÖHLER S, et al. The monarch initiative:an integrative data and analytic platform connecting phenotypes to genotypes across species[J]. Nucleic acids research, 2017,45(1):712-722.
[19] YU T, LI J, YU Q, et al. Knowledge graph for TCM health preservation:design, construction, and applications[J]. Artificial intelligence in medicine, 2017,77(3):48-52.
[20] SHI L, LI S, YANG X, et al. Semantic health knowledge graph:semantic integration of heterogeneous medical knowledge and services[J]. BioMed research international, 2017, Article ID 2858423.
[21] FATHALLA S. Detecting human diseases relatedness[J]. International journal on semantic web and information systems, 2018,14(3):120-133.
[22] BAKAL G, TALARI P, KAKANI E V, et al. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations[J]. Journal of biomedical informatics, 2018,82(6):189-199.
[23] WANG X, WANG Y, GAO C, et al. Automatic diagnosis with efficient medical case searching based on evolving graphs[J]. IEEE access, 2018,6:53307-53318.
[24] CHI Y, YU C, QI X, et al. Knowledge management in healthcare sustainability:a smart healthy diet assistant in traditional Chinese medicine culture[J]. Sustainability, 2018,10(11):4197-4217.
[25] RUAN T, HUANG Y, LIU X, et al. QAnalysis:a question-answer driven analytic tool on knowledge graphs for leveraging electronic medical records for clinical research[J]. BMC medical informatics and decision making, 2019,19(1):82-94.
[26] ADAMS B, JANOWICZ K. Thematic signatures for cleansing and enriching place-related linked data[J]. International journal of geographical information science, 2015,29(4):556-579.
[27] FANG Y X, CHENG R, LI X D, et al. Effective community search over large spatial graphs[J].Proceedings of the VLDB endowment, 2017,10(6):709-720.
[28] QIAO B, FANG K, CHEN Y, et al. Building thesaurus-based knowledge graph based on schema layer[J]. Cluster computing, 2017,20(1):81-91.
[29] GU L, XIA Y, YUAN X, et al. Research on the model for tobacco disease prevention and control based on case-based reasoning and knowledge graph[J]. Filomat, 2018,32(5):1947-1952.
[30] CHI Y, QIN Y, SONG R, et al. Knowledge graph in smart education:a case study of entrepreneurship scientific publication management[J]. Sustainability, 2018,10(4):995-1015.
[31] AYALA-GÓMEZ F, DARÓCZY B, BENCZU'R A, et al. Global citation recommendation using knowledge graphs[J]. Journal of intelligent & fuzzy systems, 2018,34(5):3089-3100.
[32] LIU D, LAI C. Mining group-based knowledge flows for sharing task knowledge[J]. Decision support systems, 2011,50(2):370-386.
[33] TOMEO P, FERNÁNDEZ-TOBÍAS I, CANTADOR I, et al. Addressing the cold start with positive-only feedback through semantic-based recommendations[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2017,25(S2):57-78.
[34] KARIM F, LYTRA I, MADER C, et al. DESERT:a continuous SPARQL query engine for on-demand query answering[J]. International journal of semantic computing, 2018,12(3):373-397.
[35] 张香玲, 陈跃国, 马登豪,等.实体搜索综述[J].软件学报.2017,28(6):1584-1605.
[36] NEUMAYER R, BALOG K, NORVAG K. On the modeling of entities for ad-hoc entity search in the Web of data[C]//Proceedings of the advances in information retrieval, 33rd European conference on IR research. Berlin:Springer-Verlag, 2012:133-145.
[37] BALOG K, NØRVÅG K. On the use of semantic knowledge bases for temporally-aware entity retrieval[C]//Proceedings of the 5th workshop on exploiting semantic annotations in information retrieval. New York:ACM Press, 2012:1-2.
[38] LASHKARI F, ENSAN F, BAGHERI E, et al. Efficient indexing for semantic search[J]. Expert systems with applications, 2017,73(5):92-114.
[39] KATIB A, SLAVOV V, RAO P. RIQ:fast processing of SPARQL queries on RDF quadruples[J]. Journal of Web semantics, 2016,37-38(S):90-111.
[40] HAO Y, LI G, YUAN P, et al. An association-oriented partitioning approach for streaming graph query[EB/OL].[2020-05-11].http://downloads.hindawi.com/journals/sp/2017/2573592.pdf.
[41] ZHENG W, LIAN X, ZOU L, et al. Online subgraph skyline analysis over knowledge graphs[J]. IEEE transactions on knowledge and data engineering, 2016,28(7):1805-1819.
[42] SONG Q, WU Y, LIN P, et al. Mining summaries for knowledge graph search[J]. IEEE transactions on knowledge and data engineering, 2018,30(10):1887-1900.
[43] LI J, WU F D, YANG X,et al.APPQKW:an efficient algorithm for processing path queries on the knowledge graph under ecosystem[J].Ekoloji, 2019,28(107):2031-2040.
[44] YUAN Y, WANG G, CHEN L, et al. Efficient pattern matching on big uncertain graphs[J]. Information sciences, 2016,339(4):369-394.
[45] LIN X, PENG Y, CHOI B, et al. Human-powered data cleaning for probabilistic reachability queries on uncertain graphs[J]. IEEE transactions on knowledge and data engineering, 2017,29(7):1452-1465.
[46] HE L, LIU B, LI G, et al. Knowledge base completion by variational bayesian neural tensor decomposition[J]. Cognitive computation, 2018,10(6):1075-1084.
[47] KLIEGR T, ZAMAZAL O. LHD 2.0:a text mining approach to typing entities in knowledge graphs[J]. Journal of Web semantics, 2016,39(8):47-61.
[48] CAO T H, HUYNH D T. Subsumption degrees between entity types and names for approximate knowledge retrieval[J].International journal of uncertainty fuzziness and knowledge-based systems, 2007,15(1):21-42.
[49] JIN J, LUO J, KHEMMARAT S, et al. Querying Web-scale knowledge graphs through effective pruning of search space[J]. IEEE transactions on parallel and distributed systems, 2017,28(8):2342-2356.
[50] SUN Y Z, HAN J W, YAN X F, et al. PathSim:meta path-based top-K similarity search in heterogeneous information networks[J]. PVLDB, 2011,4(11):992-1003.
[51] MOTTIN D, LISSANDRINI M, VELEGRAKIS Y, et al. Exemplar queries:a new way of searching[J]. The VLDB journal, 2016,25(6):741-765.
[52] JAYARAM N, KHAN A, LI C, et al. Querying knowledge graphs by example entity tuples[J]. IEEE transactions on knowledge and data engineering, 2015,27(10):2797-2811.
[53] GUPTA M, BENDERSKY M. Information retrieval with verbose queries[J].Foundations and trends in information retrieval, 2015,9(3/4):209-354.
[54] ZHENG W, YU J X, ZOU L, et al. Question answering over knowledge graphs[J]. Proceedings of the VLDB endowment, 2018,11(11):1373-1386.
[55] SHIN S, JIN X, JUNG J, et al. Predicate constraints based question answering over knowledge graph[J]. Information processing & management, 2019,56(3):445-462.
[56] YAHYA M, BERBERICH K, RAMANATH M, et al. Exploratory querying of extended knowledge graphs[J]. Proceedings of the VLDB endowment, 2016,9(13):1521-1524.
[57] CHEN J, CHEN Y, ZHANG X, et al. Entity set expansion with semantic features of knowledge graphs[J]. Journal of Web semantics, 2018,52/53(10):33-44.
[58] METZGER S, SCHENKEL R, SYDOW M. QBEES:query-by-example entity search in semantic knowledge graphs based on maximal aspects, diversity-awareness and relaxation[J]. Journal of intelligent information systems, 2017,49(3):333-366.
[59] SHAN Y, LI M, CHEN Y. Constructing target-aware results for keyword search on knowledge graphs[J]. Data & knowledge engineering, 2017,110(7):1-23.
[60] ZHENG W G, ZOU L, et al. Semantic SPARQL similarity search over RDF knowledge graphs[J].Proceedings of the VLDB endowment, 2016,9(11):840-851.
[61] ZHENG W, CHENG H, YU J X, et al. Interactive natural language question answering over knowledge graphs[J]. Information sciences, 2019,481(5):141-159.
[62] ARENAS M, CUENCA GRAU B, KHARLAMOV E, et al. Faceted search over RDF-based knowledge graphs[J]. Journal of Web semantics, 2016,37-38(3):55-74.
[63] ZHANG G, LI C. Maverick[J]. Proceedings of the VLDB endowment, 2018,11(12):1934-1937.
[64] AEBELOE C, MONTOYA G, SETTY V, et al. Discovering diversified paths in knowledge bases[J]. Proceedings of the VLDB endowment, 2018,11(12):2002-2005.
[65] LISSANDRINI M, MOTTIN D, VELEGRAKIS Y, et al. X(2)Q:Your personal example-based graph explorer[J]. Proceedings of the VLDB endowment, 2018,11(12):2026-2029.
[66] ARNAOUT H, ELBASSUONI S. Effective searching of RDF knowledge graphs[J]. Journal of Web semantics, 2018,48(1):66-84.
[67] TONON A, CATASTA M, PROKOFYEV R, et al. Contextualized ranking of entity types based on knowledge graphs[J]. Journal of Web semantics, 2016,37/38(3):170-183.
[68] BIN B I, HAO M A, HSU BO-JUNE (PAUL), et al. Learning to recommend related entities to search users[C]//Proceedings of the 8th ACM international conference on Web search and data mining. New York:Association for Computing Machinery, 2015:139-148.
[69] BLEI M D, NG Y A, JORDAN I M. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(4/5):993-1022.
[70] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[EB/OL].[2020-05-11]. https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571/9523.
[71] JI G L, LIU K, HE S Z, et al. Knowledge graph completion with adaptive sparse transfer matrix[EB/OL].[2020-05-11]. https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11982/11693.
[72] ALTHOFF T, DONG X L, MURPHY K, et al. TimeMachine:timeline generation for knowledge-base entities[C]//Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. New York:Association for Computing Machinery, 2015:19-28.
[73] VOSKARIDES N, MEIJ E, DE RIJKE M. Generating descriptions of entity relationships[C]//Proceedings of 39th European Conference on IR Research. Switzerland:Springer Nature, 2017:317-330.
[74] WEN J, LI J, MAO Y, et al. On the representation and embedding of knowledge bases beyond binary relations[EB/OL].[2020-05-11].https://arxiv.org/pdf/1604.08642.pdf.
[75] LEE J Y, MIN J K, OH A, et al. Effective ranking and search techniques for Web resources considering semantic relationships[J]. Information processing and management, 2014,50(1):132-155.
[76] SUCHANEK F M, GROSS-AMBLARD D, ABITEBOUL S. Watermarking for ontologies[C]//The Semantic Web - ISWC 2011. Berlin:Springer-Verlag, 2011:697-713.
[77] MIN B, GRISHMAN R, WAN L, et al. Distant supervision for relation extraction with an incomplete knowledge base[C]//Proceedings of the 2013 conference of the North American chapter of the Association for Computational Linguistics:human language technologies. Stroudsburg:ACL, 2013:777-782.
[78] CHEN Y, GOLDBERG S L, WANG D Z, et al. Ontological pathfinding[C]//Proceedings of the 2016 ACM SIGMOD international conference on management of data. New York:ACM Press, 2016:835-846.
[79] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th conference on artificial intelligence. Palo Alto:AAAI, 2015:2181-2187.
[80] GARDNER M, MITCHELL T M. Efficient and expressive knowledge base completion using subgraph feature extraction[C]//Proceedings of the conference on empirical methods in natural language processing. Stroudsburg:Association for Computational Linguistics, 2015:1488-1498.
[81] WIENAND D, PAULHEIM H. Detecting incorrect numerical data in DBpedia[C]//Proceedings of the semantic Web:trends and challenges, 11th internationl conference. Berlin:Springer-Verlag, 2014:504-518.
[82] UYAR A, ALIYU F M. Evaluating search features of Google knowledge graph and Bing satori[J]. Online information review, 2015,39(2):197-213.
[83] FIONDA V, PIRRÒ G. Explaining and querying knowledge graphs by relatedness[J]. Proceedings of the VLDB endowment, 2017,10(12):1913-1916.
[84] YAN J, XU C, LI N, et al. Optimizing model parameter for entity summarization across knowledge graphs[J]. Journal of combinatorial optimization, 2019,37(1):293-318.
[85] PLA KARIDI D, STAVRAKAS Y, VASSILIOU Y. Tweet and followee personalized recommendations based on knowledge graphs[J]. Journal of ambient intelligence and humanized computing, 2018,9(6):2035-2049.
Outlines

/