Investigation Research on Construction of Data Science Courses in UIUC iSchool

  • Yang Ruixian ,
  • Wan Jiaqi
Expand
  • School of Information Management, Zhengzhou University, Zhengzhou 450001

Received date: 2020-02-02

  Revised date: 2020-04-13

  Online published: 2020-08-20

Abstract

[Purpose/significance] This paper studied the current construction of data science curriculum groups, focuses on the training program of data science talents and provides references and advice for the data science practice of information colleges in China.[Method/process] Based on the data science curriculum practice of UIUC iSchool, this paper first investigated the name and introductions of the data science-related courses in detail, academic hours, teaching forms, the teachers and the subjects, then systematically classified the course groups and made a detailed comparative analysis from the 4 aspects:training object type, teaching forms, teaching cooperation degree, and the course content. Finally, this paper summarized the enlightenments and suggestions for the development of data science education in China in light of the current domestic situation.[Result/conclusion] In UIUC iSchool Data science courses can be divided into 6 categories, which are suitable for students at all stages. A mixed teaching method combining online and offline is adopted. Teachers cooperate with each other and the contents closely follow the data science job market requirements. Finally, the authors suggest that we should strengthen the continuity of cultivation, innovate teaching methods, improve teaching cooperation, and enrich research directions in the field of data science in China.

Cite this article

Yang Ruixian , Wan Jiaqi . Investigation Research on Construction of Data Science Courses in UIUC iSchool[J]. Library and Information Service, 2020 , 64(16) : 122 -131 . DOI: 10.13266/j.issn.0252-3116.2020.16.013

References

[1] 中华人民共和国工业和信息化部.大数据产业发展规划(2016-2020年)[EB/OL].[2019-10-21].http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757016/c5464999/content.html.
[2] Talkingdata.专业数据人才教育行业生态报告[R/OL].[2019-08-30]. http://mi.talkingdata.com/report-detail.html?id=750.
[3] 中华人民共和国教育部.深入推进"新工科"建设[EB/OL].[2019-11-27]. http://www.moe.gov.cn/jyb_xwfb/xw_fbh/moe_2606/2019/tqh20191031/sfcl/201910/t20191031_406260.html.
[4] NAUR P. Concise survey of computer methods[M]. Lund, Sweden:Student Litteratur, 1974:1-30.
[5] CONWAY D.The data science venn diagram[EB/OL].[2019-08-31]. http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram.
[6] ANDERSON P, BOWRING J. An undergraduate degree in data science:curriculum and a decade of implementation experience[EB/OL].[2019-10-21]. https://blogs.valpo.edu/datadesk/files/2017/04/Charleston-SIGCSE14-designofDataScience-withObjectives.pdf.
[7] BAUMER B, COLLEGE S. A data science course for undergraduates:thinking with Data[J]. The American statistician,2015,69(4):334-342.
[8] VEAUX R, AGARWAL M. Curriculum guidelines for undergraduate programs in data science[EB/OL].[2019-10-21]. https://www.stat.berkeley.edu/~nolan/Papers/Data.Science.Guidelines.16.9.25.pdf.
[9] SONG V, ZHU Y. Big data and data science:opportunities and challenges of iSchools[J].Journal of data and information science,2017,2(3):1-18.
[10] SONG V, ZHU Y. Big data and data science:what should we teach?[J]. Expert systems,2016,33(4):364-373.
[11] 朝乐门,杨灿军,王盛杰,等.全球数据科学课程建设现状的实证分析[J].数据分析与知识发现,2017,1(6):12-21.
[12] 朝乐门,邢春晓,王雨晴.数据科学与大数据技术专业特色课程研究[J].计算机科学,2018,3(45):3-10.
[13] 李莎莎,周竞文,唐晋韬,等.数据科学与大数据人才专业课程体系分析[J].计算机工程与科学,2018,(40):109-113.
[14] 闫慧,张钰浩,张鑫灿,等.iSchools联盟数据科学教育项目现状调查[J].情报资料工作,2018(4):95-100.
[15] 苏日娜,杨沁.LIS学科中数据科学课程体系设置研究——以iSchools高校课程调研为中心[J].图书馆论坛,2019,39(4):40-49.
[16] 邓胜利,付少雄.计算科学与信息科学融合下的图书情报学科建设[J].情报资料工作,2019,40(3):80-87.
[17] SONG V, ZHU Y. Big data and data science:opportunities and Challenges of iSchools[J]. Journal of data and information science,2017,2(3):1-18.
[18] DHAR V. Data science and prediction[J]. Communications of the ACM, 2013, 56(12):64-73.
[19] Provost F, Fawcett T. Data science and its relationship to big data and data-driven decision making[J]. Big data, 2013, 1(1):51-59.
[20] DONOHO D. 50 years of data science——a presentation at the Tukey Centennial workshop[R/OL].[2020-05-30]. http://www.mathsccnu.com/forum.php?mod=attachment&aid=MzQwN3xkMGE3YWQ3NnwxNDQ1NTI3Mjg1fDF8MzkwMA%3D%3D.
[21] 官方权威发布"图悦"热词分析指标说明[EB/OL].[2019-11-24]. https://mp.weixin.qq.com/s?__biz=MjM5MDAzOTk4OA==&mid=204190927&idx=1&sn=079a1b63a5a8d1a926307957d954d758&scene=1&from=groupmessage&isappinstalled=0#rd.
[22] 朝乐门.数据科学[M].北京:清华大学出版社,2016:31-32.
[23] 魏来,高希然.大数据背景下高校数据馆员的角色定位[J].情报资料工作,2015(5):90-94.
Outlines

/