Argument Mining Review

  • Li Yongze ,
  • Ou Shiyan
Expand
  • School of Information Management, Nanjing University, Nanjing 210023

Received date: 2019-11-24

  Revised date: 2020-03-09

  Online published: 2020-10-05

Abstract

[Purpose/significance] Argument mining can identify the argument structure in argumentative texts, so as to help users to understand the reason and process of drawing a conclusion, and thus has important academic and application value. In recent years, argument mining has obtained great attention in social media content mining, legal assistance judgment, decision support and so on, and become a new research direction in the field of text mining. The purpose of this paper is to sort out and summarize the existing studies and application of argument mining, to discover new research hot spots, and to provide reference for future research. [Method/process] We serched literatures by using the keywords of "argument mining OR argument component OR argument structure OR argumentation mining" from the Web of Science and ACL databases and obtained a total of 220 articles, and then analyzed them from three aspects:argument models, argument mining tasks and argument mining applications by intensive reading and content analysis. [Result/conclusion] The research on argument mining has just started. Existing studies focused more on simple argumentative texts such as social media, and ignored complex argumentative texts such as scientific papers. In future, researchers can focus on the argument mining of complex texts and carry out research from three aspects:argument annotation schemas, the identification of argument components and relationships, and the optimization of argument structures.

Cite this article

Li Yongze , Ou Shiyan . Argument Mining Review[J]. Library and Information Service, 2020 , 64(19) : 128 -139 . DOI: 10.13266/j.issn.0252-3116.2020.19.014

References

[1] 赫尔利帕特里克. 简明逻辑学导论[M]. 陈波, 宋文淦, 译. 10版. 北京:世界图书出版公司, 2010:5-7.
[2] WALLTON D. Argumentation theory:a very short introduction[G]//Argumentation in artificial intelligence. Boston:Springer, 2009:1-22.
[3] MOENS M F, BOIY E, PALAU R M, et al. Automatic detection of arguments in legal texts[C]//Proceedings of the 11th international conference on artificial intelligence and law-ICAIL. Stanford:ACM Press, 2007:225-230.
[4] KWON N, HOVY E, ZHOU L, et al. Identifying and classifying subjective claims[C]//Proceedings of the 8th annual international conference on digital government research. CA:ACM Press, 2007:76-81.
[5] PALAU R M, MOENS M F. Argumentation mining:The detection, classification and structure of arguments in text[C]//Proceedings of the 12th international conference on artificial intelligence and law. New York:ACM, 2009:98-107.
[6] First workshop on argumentation mining[EB/OL].[2020-03-07]. https://www.uncg.edu/cmp/ArgMining2014/.
[7] SICSA Workshop on argument mining 2014[EB/OL],[2020-03-07]. http://www.arg-tech.org/index.php/sicsa-workshop-on-argument-mining-2014/.
[8] MOCHALES P R, MOENS M F. Study on sentence relations in the automatic detection of argumentation in legal cases[C]//Proceedings of the 2007 conference on legal knowledge and information systems. The Netherlands:IOS Press, 2007:89-98.
[9] SONG Y, HEILMAN M, BEIGMAN B, et al. Applying argumentation schemes for essay scoring[C]//Proceedings of the first workshop on argumentation mining. Baltimore:Association for Computational Linguistics, 2014:69-78.
[10] 熊才权, 孙贤斌, 欧阳勇. 辩论的逻辑模型研究综述[J]. 模式识别与人工智能, 2010, 23(3):362-368.
[11] BENTAHAR J, MOULIN B, BELANGER M. A taxonomy of argumentation models used for knowledge representation[J]. Artificial intelligence review, 2010, 33(3):211-259.
[12] TOULMIN S E. The Uses of Argument[M]. London:Cambridge University Press, 1958.
[13] DUNG P M. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and N-person games[J]. Artificial intelligence, 1995, 77(2):321-357.
[14] PERELMAN C, OLBRECHTS-TYTECA L. The New Rhetoric:A treatise on argumentation[M]. WILKINSON J, WEAVER P, trans. Notre Dame:University of Notre Dame Press, 1971.
[15] FREEMAN J B. Argument structure:Representation and theory[M]. Netherlands:Springer, 2011:3-6.
[16] THOMAS S N. Practical reasoning in natural language[M]. New Jeresy:Prentice-Hall, 1986.
[17] 王建芳. 基于论辩的论证结构研究——弗里曼模型与图尔敏模型的比较[J]. 逻辑学研究, 2016, 9(3):42-56.
[18] 张斌峰, 侯郭垒. 论证型式的特征及其功能[J]. 湖北大学学报(哲学社会科学版), 2018, 45(6):66-72,176.
[19] WALTON W. Argumentation schemes[M]. London:Cambridge University Press, 2008.
[20] LAWRENCE J, REED C. Argument mining using argumentation scheme structures[J]. Frontiers in artificial intelligence and applications, 2016, 287:379-390.
[21] STAB C. Argumentative writing support by means of natural language processing[D]. Darmstadt:der Technischen Universität Darmstadt, 2017.
[22] LAUSCHER A, GLAVAS G, PONZETTO S P. An argument-annotated corpus of scientific publications[C]//Proceedings of the 5th workshop on argument mining. Brussels:Association for Computational Linguistics, 2018:40-46.
[23] KIRSCHNER C, ECKLE-KOHLER J, GUREVYCH I. Linking the thoughts:analysis of argumentation structures in scientific publications[C]//Proceedings of the 2nd workshop on argumentation mining. Denver, CO:Association for Computational Linguistics, 2015:1-11.
[24] PELDSZUS A. Automatic recognition of argumentation structure in short monological texts[D]. Potsdam:University of Potsdam, 2017.
[25] STAB C, KIRSCHNER C, ECKLE K J, et al. Argumentation mining in persuasive essays and scientific articles from the discourse structure perspective[C]//Proceedings of the workshop on frontiers and connections between argumentation theory and natural language. Bertinoro, Italy:2014:1-10.
[26] PASSON M, LIPPI M, SERRA G, et al. Predicting the usefulness of amazon reviews using off-the-shelf argumentation mining[C]//Proceedings of the 5th workshop on argument mining. Brussels:ACL, 2018:35-39.
[27] BOLTU?IC F, ŠNAJDER J. Fill the gap! Analyzing implicit premises between claims from online debates[C]//Proceedings of the third workshop on argument mining. Berlin:ACL, 2016:124-133.
[28] GHOSH D, MURESAN S, WACHOLDER N, et al. Analyzing argumentative discourse units in online interactions[C]//Proceedings of the First Workshop on argumentation mining. Baltimore:ACL, 2014:39-48.
[29] BOLTU?IC F, ŠNAJDER J. Back up your stance:Recognizing arguments in online discussions[C]//Proceedings of the first workshop on argumentation mining. Baltimore:ACL, 2014:49-58.
[30] MORIO G, FUJITA K. Annotating online civic discussion threads for argument mining[C]//International conference on Web intelligence 2018. Marca Chile:IEEE:546-553.
[31] HIDEY C, MUSI E, HWANG A, et al. Analyzing the semantic types of claims and premises in an online persuasive forum[C]//Proceedings of the 4th workshop on argument mining. Copenhagen:ACL, 2017:11-21.
[32] ACCUOSTO P, SAGGION H. Discourse-driven argument mining in scientific abstracts[C]//Natural language processing and information systems. Cham:Springer, 2019, 182-194.
[33] LIPPI M, TORRONI P. Argumentation mining:state of the art and emerging trends[J]. ACM Transactions on internet technology, 2016, 16(2):1-25.
[34] GOUDAS T, LOUIZOS C, PETASIS G, et al. Argument extraction from news, blogs, and social media[C]//Artificial intelligence:methods and applications. Greece:Springer, 2014:287-299.
[35] FLOROU E, KONSTANTOPOULS S, Koukourikos A, et al. Argument extraction for supporting public policy formulation[C]//Proceedings of the 7th workshop on language technology for cultural heritage, social sciences, and humanities. Sofia:ACL, 2013:49-54.
[36] DUSMANU M, CABRIO E, VILLATA S. Argument mining on twitter:arguments, facts and sources[C]//Proceedings of the 2017 conference on empirical methods in natural language processing. Copenhagen:ACL, 2017:2317-2322.
[37] REIMERS N, SCHILLER B, BECK T, et al. Classification and clustering of arguments with contextualized word embeddings[C]//Proceedings of the 57th annual meeting of the association for computational linguistics. Florence:ACL, 2019:567-578.
[38] FERRARA A, MONTANELLI S, PETASIS G. Unsupervised detection of argumentative units though topic modeling techniques[C]//Proceedings of the 4th workshop on argument mining. Copenhagen:ACL, 2017:97-107.
[39] LAWRENCE J, REED C, ALLEN C, et al. Mining arguments From 19th century philosophical texts using topic based modelling[C]//Proceedings of the first workshop on argumentation mining. Maryland:ACL, 2014:79-87.
[40] SARDIANOS C, KATAKIS I M, PETASIS G, et al. Argument extraction from news[C]//Proceedings of the 2nd workshop on argumentation mining. Denver:ACL, 2015:56-66.
[41] LI M, GAO Y, WEN H, et al. Joint RNN model for argument component boundary detection[EB/OL].[2020-03-07]. http://arxiv.org/abs/1705.02131.
[42] PETASIS G. segmentation of argumentative texts with contextualized word representations[C]//Proceedings of the 6th workshop on argument mining. Florence:ACL, 2019:1-10.
[43] TRAUTMANN D, DAXENBERGER J, STAB C, et al. Fine-Grained argument unit recognition and classification[C]//The thirty-fourth AAAI conference on artificial intelligence (AAAI 2020). New York:AAAI, 2020:9048-9056.
[44] LIPPI M, TORRONI P. Context-independent claim detection for argument mining[C]//Proceedings of the 24th international joint conference on artificial intelligence. Argentina:AAAI Press, 2015:185-191.
[45] ECKLE-KOHLER J, KLUGE R, GUREVYCH I. On the role of discourse markers for discriminating claims and premises in argumentative discourse[C]//Proceedings of the 2015 conference on empirical methods in natural language processing. Lisbon:ACL, 2015:2236-2242.
[46] STAB C, GUREVYCH I. Identifying argumentative discourse structures in persuasive esays[C]//Proceedings of the 2014 Conference on empirical methods in natural language processing. Doha:ACL, 2014:46-56.
[47] LUGINI L, LITMAN D. Argument component classification for classroom discussions[C]//Proceedings of the 5th workshop on argument mining. Brussels:ACL, 2018:57-67.
[48] DUTTA S, DAS D, CHAKRABORTY T. Changing views:Persuasion modeling and argument extraction from online discussions[J]. Information processing & management, 2019, 57(2):1-14.
[49] GARCLA-GORROSTIETA J M, LOPEZ-LOPEZ A. Argument component classification in academic writings[J]. Journal of intelligent & fuzzy systems, 208, 34(5):3037-3047.
[50] STAB C, GUREVYCH I. Parsing argumentation structures in persuasive essays[J]. Computational linguistics, 2017, 43(3):619-659.
[51] AKER A, SLIWA A, MA Y, et al. What works and what was not:Classifier and feature analysis for argument mining[C]//Proceedings of the 4th workshop on argument mining. Copenhagen:ACL, 2017:91-96.
[52] LAWRENCE J, REED C. Combining argument mining techniques[C]//Proceedings of the 2nd workshop on argumentation mining. Denver:ACL, 2015:127-136.
[53] DAGAN I, DOLAN B, MAGNINIL B, et al. Recognizing textual entailment:rational, evaluation and approaches[J]. Journal of Natural Language Engineering, 2009, 15(4), 1-17.
[54] CABRIO E, VILLATA S. Combining textual entailment and argumentation theory for supporting online debates interactions[C]//Proceedings of the 50th annual meeting of the association for computational linguistics. Korea:ACL, 2012:208-212.
[55] HOU Y, JOCHIM C. Argument relation classification using a joint inference model[C]//Proceedings of the 4th workshop on argument mining. Copenhagen:ACL, 2017:60-66.
[56] GALASSI A, LIPPI M, TORRONI P. Argumentative link prediction using residual networks and multi-objective learning[C]//Proceedings of the 5th workshop on argument mining. Brussels:ACL, 2018:1-10.
[57] NGUYEN H, LITMAN D. Context-aware argumentative relation mining[C]//Proceedings of the 54th annual meeting of the association for computational linguistics. Berlin:ACL, 2016:1127-1137.
[58] MITROVIC J, O'REILLY C, MLADENOVIC M, et al. Ontological representations of rhetorical figures for argument mining[J]. Argument & computation, 2017, 8(3):267-287.
[59] GREEN N L. Representation of argumentation in text with rhetorical structure theory[J]. Argumentation, 2010, 24(2):181-196.
[60] RAJENDRAN P, BOLLEGALA D, PARSONS S. Contextual stance classification of opinions:a step towards enthymeme reconstruction in online reviews[C]//Proceedings of the third workshop on argument mining. Berlin:ACL, 2016:31-39.
[61] GREEN N. Manual identification of arguments with implicit conclusions using semantic rules for Argument Mining[C]//Proceedings of the 4th workshop on argument mining. Copenhagen:ACL, 2017:73-78.
[62] GREEN N. Towards mining scientific discourse using argumentation schemes[J]. Argument & computation, 2018, 9(2):121-135.
[63] NIVEN T, KAO H-Y. Probing neural network comprehension of natural language arguments[C]//Proceedings of the 57th annual meeting of the association for computational linguistics. Florence:ACL, 2019:4658-4664.
[64] PELDSZUS A, STEDE M. Joint prediction in MST-style discourse parsing for argumentation mining[C]//Proceedings of the 2015 conference on empirical methods in natural language processing. Lisbon:ACL, 2015:938-948.
[65] AFANTENOS S, PELDSZUS A, STEDE M. Comparing decoding mechanisms for parsing argumentative structures[J]. Argument & computation, 2018, 9(3):177-192.
[66] WALKER V R, FOERSTER D, PONCE J M, et al. Evidence types, credibility factors, and patterns or soft rules for weighing conflicting evidence:argument mining in the context of legal rules governing evidence assessment[C]//Proceedings of the 5th workshop on argument mining. Belgium:ACL, 2018:68-78.
[67] AL-ABDULAKRIM L, ATKINSON K, BENCH-CAPON T. Statement types in legal argument[C]//Frontiers in artificial intelligence and applications. Hague:IOS Press, 2016:3-12.
[68] PERSING I, NG. Modeling argument strength in student essays[C]//Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing. Beijing:ACL, 2015:543-552.
[69] WACHSMUTH H, NADERI N, HABERNAL I, et al. Argumentation quality assessment:Theory vs. Practice[C]//Proceedings of the 55th annual meeting of the association for computational linguistics. Vancouver:ACL, 2017:250-255.
[70] WACHSMUTH H, AL KHATIB K, STEIN B. Using argument mining to assess the argumentation quality of essays[C]//Proceedings of COLING 2016, the 26th international conference on computational linguistics:technical papers. Japan:The COLING 2016 Organizing Committee, 2016:1680-1691.
[71] PERSING I, NG V. Why can't you convince me? Modeling weaknesses in unpersuasive arguments[C]//Proceedings of the twenty-sixth international joint conference on artificial intelligence. Melbourne:International Joint Conferences on Artificial Intelligence Organization, 2017:4082-4088.
[72] KONAT B, LAWRENCE J, PARK J, et al. A corpus of argument networks:using graph properties to analyse divisive issues[C]//Proceedings of the 10th international conference on language resources and evaluation. Portoro:LREC, 2016:3899-3906.
[73] LIEBECK M, ESAU K, CONRAD S. What to do with an airport? Mining arguments in the German online participation project tempelhofer feld[C]//Proceedings of the third workshop on argument mining. Berlin:ACL, 2016:144-153.
[74] TEUFEL S, MOENS M. Summarizing scientific articles:Experiments with relevance and rhetorical status[J]. Computational linguistics, 2002, 28(4):409-445.
[75] YEPES A J, MORK J, ARONSON A. Using the argumentative structure of scientific literature to improve information access[C]//Proceedings of the 2013 workshop on biomedical natural language processing. Sofia:ACL, 2013:102-110.
[76] GREEN N. Identifying argumentation schemes in genetics research articles[C]//Proceedings of the 2nd workshop on argumentation mining. Denver:ACL, 2015:12-21.
[77] MAYER T, CABRIO E, VILLATA S. Evidence type classification in Randomized Controlled Trials[C]//Proceedings of the 5th workshop on argument mining. Brussels:ACL, 2018:29-34.
Outlines

/