[Purpose/significance] The model construction and empirical study on concurrent acquisition of network public opinion information are helpful to obtain the key information needed in time from the massive public opinion information and provide data guarantee for its effective analysis. [Method/process] Through the comprehensive analysis on the current situation of public opinion information acquisition research, this paper defined the model elements of concurrent acquisition of multimedia network public opinion information, and constructed the model by combining three mathematical analysis methods of DEMATEL, AHP and FMF, and carried out empirical analysis accordingly. [Result/conclusion] The research results show that the data conclusions obtained are more consistent with the objective situation of public opinion events, which can be used as the basis for the judgment of concurrent acquisition of public opinion information.
Xu Yejing
,
Huang Wei
,
Zhao Jiangyuan
. The Model Construction and Empirical Analysis on Concurrent Acquisition of Multimedia Network Public Opinion Information[J]. Library and Information Service, 2020
, 64(23)
: 124
-132
.
DOI: 10.13266/j.issn.0252-3116.2020.23.012
[1] 中国互联网络信息中心.中国互联网络发展状况统计报告[EB/OL].[2020-05-10]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202004/t20200428_70974.htm.
[2] XUE J, YANG Z, HOU S, et al. Processing concurrent graph analytics with decoupled computation model[J]. IEEE transactions on computers, 2017, 66(5):876-890.
[3] ZHENG H, LIU W, XIAO C. Structural relationship model for design defect and influencing factors in the concurrent design process[J]. International journal of production research, 2018, 56(13/14):4897-4924.
[4] SUN S, GONG J, ZOMAYA A Y, et al. A distributed incremental information acquisition model for large-scale text data[J]. Cluster computing, 2019,22(1):2383-2394.
[5] LIU Y, KANG X, MIAO D, et al. A knowledge acquisition method based on concept lattice and inclusion degree for ordered information systems[J]. International journal of machine learning and cybernetics, 2019,10(1):3245-3261.
[6] LIU J. Information collection principles, main channels and common methods of public sector websites[M]//HUNG J C,YEN N Y, CHANG J W. Frontier computing. Singapore:Springer,2020:518-524.
[7] 李辉,王建文,叶明雯.基于Hadoop的海量气象水文数据并发处理模型[J].计算机应用,2018,38(S2):187-191,205.
[8] 洪亮,石立艳,李明.基于系统动力学的多主体回应网络舆情影响因素研究[J].情报科学,2017,35(1):133-138.
[9] 朱红灿, 胡新, 廖小巧. 基于心流理论的公众政府信息获取网络渠道持续使用意愿研究[J]. 情报资料工作, 2018,39(2):56-62.
[10] 靳江艳, 方忆湘, 周京博,等. 坐标测量信息多色集合层次结构表示及获取[J]. 组合机床与自动化加工技术, 2019, 540(2):65-67,71.
[11] 李莉,刘淼,冯嘉辉.基于多元数据信息获取的关键技术研究[J].长春理工大学学报(自然科学版),2020,43(1):97-103.
[12] 张洪豪,赵泽宁,姚世春.一种基于Web爬虫的网页信息获取系统[J].中国科技信息,2020,624(6):90-91.
[13] 秦宜州. 实时监控系统中基于多核并发的并行技术应用研究[D].沈阳:东北大学,2012.
[14] GAO Q, QIN F, PANDA D K. DMTracker:finding bugs in large-scale parallel programs by detecting anormaly in data movements[C]//IEEE conference on supercomputing.Reno, Nevada:Association for Computing Machinery,2007.
[15] 黄微,许烨婧,刘熠.大数据环境下多媒体网络舆情并发获取的数据驱动机理研究[J].情报理论与实践,2019,42(6):42-48,16.
[16] 许烨婧.多媒体网络舆情信息的并发获取机理与话题衍进追踪研究[D].长春:吉林大学,2020.
[17] WC recommendation. OWL Web ontology language overview[J]. February, 2004, 63(45):990-996.
[18] 杨印生,李洪伟.管理科学与系统工程中的定量分析方法[M].长春:吉林科学技术出版社,2009.
[19] 李宗富,张向先.政务微信公众号服务质量的关键影响因素识别与分析[J].图书情报工作,2016,60(14):84-93.
[20] 许鹏程,毕强,丁梦晓,等.基于DEMATEL的知识发现系统交互质量影响因素识别与分析[J].情报资料工作,2018,39(4):24-31.
[21] GVNDODU F K, KAHRAMAN C. A novel spherical fuzzy analytic hierarchy process and its renewable energy application[J]. Soft computing, 2020, 24(6):4607-4621.
[22] 王高飞,李明.基于AHP-模糊综合分析的移动社交网络舆情预警模型研究[J].现代情报,2017,37(1):41-44,65.
[23] 相甍甍.移动电子商务消费者隐私信息披露行为及风险研究[D].长春:吉林大学,2018.
[24] 黄微,许烨婧,韩瑞雪,等.网络舆情语义倾向性的隶属度研究[J].图书情报工作,2015,59(21):27-32.
[25] 陈金强.指标权重信息不完全下的模糊综合评价方法及其在绩效考核中的应用研究[D]. 杭州:浙江财经大学,2017.
[26] 张国力.基于模糊综合评价的国有大型企业信息安全管理研究[D].北京:北京邮电大学,2012.