[1] 赵星,乔利利,叶鹰. 面向数据智能和知识发现的图书情报学跨界拓展——数据-学术-创造整合论[J]. 中国图书馆学报,2020,46(6):16-25.
[2] 叶鹰. 图书情报学的学术思想与技术方法及其开新[J]. 中国图书馆学报,2019,45(2):15-25.
[3] 丁晓蔚,苏新宁. 基于区块链可信大数据人工智能的金融安全情报分析[J]. 情报学报,2019,38(12):1297-1309.
[4] 郭海玲,马红雨,许泽辉. 社会化媒体用户信息披露意愿影响模型构建与实证——以微信用户为例[J]. 图书情报工作,2019,63(15):111-120.
[5] 张薇薇,柏露. 众包社区用户持续使用行为研究——基于ECM-ISC和承诺信任理论[J]. 情报资料工作,2017(2):54-62.
[6] 百度百科. 数据智能[EB/OL].[2020-08-07]. https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%99%BA%E8%83%BD/6657122?fr=aladdin.
[7] 詹青龙,杨晶晶. 数据智能支撑的课堂教学管理跃迁研究[J]. 电化教育研究,2020,41(7):100-107.
[8] 吴俊杰,刘冠男,王静远,等. 数据智能:趋势与挑战[J]. 系统工程理论与实践,2020,40(8):2116-2149.
[9] TalkingData移动观象台. 2018数据智能生态报告[R/OL].[2020-08-07]. http://mi.talkingdata.com/report-detail.html?id=843.
[10] 唐晓波,郑杜,翟夏普. 基于大数据智能的竞争情报系统模型研究[J]. 情报理论与实践,2018,41(11):133-137,160.
[11] SERBAN O, THAPEN N, MAGINNIS B, et al. Real-time processing of social media with SENTINEL:a syndromic surveillance system incorporating deep learning for health classification[J]. Information processing & management, 2019, 56(3):1166-1184.
[12] LI S L. Deep adversarial model for musculoskeletal quality evaluation[J]. Information processing & management, 2020, 57(1):102146.
[13] MAQSOOD H, MEHMOOD I, MAQSOOD M, et al. A local and global event sentiment based efficient stock exchange forecasting using deep learning[J]. International journal of information management, 2020, 50:432-451.
[14] KIM J C, CHUNG K Y. Knowledge-based hybrid decision model using neural network for nutrition management[J]. Information technology and management, 2019:1-11.
[15] 马超,李纲,陈思菁,等. 基于多模态数据语义融合的旅游在线评论有用性识别研究[J]. 情报学报,2020,39(2):199-207.
[16] 董庆兴,李华阳,曹高辉,等. 基于深度学习的MOOC论坛探索型对话识别方法研究[J]. 图书情报工作,2019,63(5):92-99.
[17] 199IT. 新华三:2020人工智能发展报告白皮书[R/OL].[2020-12-20]. http://www.199it.com/archives/1050916.html.
[18] SUN T Q, MEDAGLIA R. Mapping the challenges of artificial intelligence in the public sector:evidence from public healthcare[J]. Government information quarterly, 2019, 36(2):368-383.
[19] COX A M, PINFIELD S, RUTTER S. The intelligent library:thought leaders' views on the likely impact of artificial intelligence on academic libraries[J]. Library hi tech, 2019, 37(3):418-435.
[20] WIESENBERG M, TENCH R. Deep strategic mediatization:organizational leaders' knowledge and usage of social bots in an era of disinformation[J]. International journal of information management, 2020, 51:102042.
[21] 马捷,吴琼,崔春. 领域专家知识在本体半自动构建中的作用机理研究[J]. 图书情报工作,2011,55(23):17-21.
[22] 刘浏,王东波,黄水清. 机器学习视角的人工智能研究回顾及对图书情报学的影响[J]. 图书与情报,2017(6):84-95.
[23] 许鹏程,毕强. 基于知识超网络的领域专家识别研究[J]. 数据分析与知识发现,2019,3(11):89-98.
[24] 郭飞,盛晓明. 专家信任的危机与重塑[J]. 科学学研究,2016, 34(8):1131-1136.
[25] 谢耘耕,万旋傲,刘璐,等. 中国居民社会信任度调查报告[J]. 新媒体与社会,2017(1):7-21.
[26] 周群,化柏林. 基于多源数据融合的科技决策需求主题识别研究[J]. 情报理论与实践,2019,42(3):107-113.
[27] SCHUETZ S, VENKATESH V. Research perspectives:the rise of human machines:how cognitive computing systems challenge assumptions of user-system interaction[J]. Journal of the Association for Information Systems, 2020, 21(2):460-482.
[28] BISWAL S, SUN H Q, GOPARAJU B, et al. Expert-level sleep scoring with deep neural networks[J]. Journal of the American Medical Informatics Association, 2018, 25(12):1643-1650.
[29] SINGH A, HAQUE A, ALAHI A, et al. Automatic detection of hand hygiene using computer vision technology[J]. Journal of the American Medical Informatics Association, 2020, 27(8):1316-1320.
[30] CHATURVEDI S S, TEMBHURNE J V, DIWAN T. A multi-class skin cancer classification using deep convolutional neural networks[J]. Multimedia tools and applications, 2020, 79(39):28477-28498.
[31] 王小宁,刘丽丽. 供需视角下农村精准信息服务扩散影响因素研究[J]. 情报科学,2020,38(3):93-100.
[32] HUO C G, ZHANG M, MA F C. Factors influencing people's health knowledge adoption in social media[J]. Library hi tech, 2018, 36(1):129-151.
[33] ASRAF M, AHMAD J, SHARIF W, et al. The role of continuous trust in usage of online product recommendations[J]. Online information review, 2020, 44(4):745-766.
[34] 孙玉伟,成颖,谢娟. 科研人员数据复用行为研究:系统综述与元综合[J]. 中国图书馆学报,2019,45(3):110-130.
[35] 方爱华,陆朦朦,刘坤锋. 虚拟社区用户知识付费意愿实证研究[J]. 图书情报工作,2018,62(6):105-115.
[36] MCALLISTER D J. Affect-and cognition-based trust as foundations for interpersonal cooperation in organizations[J]. Academy of management journal, 1995, 38(1):24-59.
[37] 杨付,刘军,王婷,等. 中国组织情境下员工职业发展过程中"边界困境"产生机理:工作不安全感的视角[J]. 南开管理评论,2019,22(6):176-187.
[38] 董颖,许正良,刘方,等. 移动社交网络用户对产品推荐信息反应意愿研究[J]. 图书情报工作,2016,60(23):111-118.
[39] FAN H M, LEDERMAN R. Online health communities:how do community members build the trust required to adopt information and form close relationships?[J]. European journal of information systems, 2018, 27(1):62-89.
[40] CHANG K C, HSU Y T, HSU C L, et al. Effect of tangibilization cues on consumer purchase intention in the social media context:regulatory focus perspective and the moderating role of perceived trust[J]. Telematics and informatics, 2019, 44:101265.
[41] STRAUB D, BOUDREAU M C, GEFEN D. Validation guidelines for IS positivist research[J]. Communications of the Association for Information Systems, 2004, 13(1):380-427.
[42] 罗立群,李广建. 智慧情报服务与知识融合[J]. 情报资料工作, 2019,40(2):87-94.
[43] 邱韵霏,李春旺. 智能情报分析模式:数据驱动型与知识驱动型[J]. 情报理论与实践, 2020,43(2):28-34.
[44] 查先进,张晋朝,严亚兰. 微博环境下用户学术信息搜寻行为影响因素研究——信息质量和信源可信度双路径视角[J]. 中国图书馆学报,2015,41(3):71-86.