INFORMATION RESEARCH

A Comparative Empirical Study on Data Intelligence and Expert Knowledge from the Perspective of Trust

  • Liu Kunfeng ,
  • Li Yanhong ,
  • Zhang Xinyuan
Expand
  • 1 School of Information Management, Zhengzhou University of Aeronautics, Zhengzhou 450046;
    2 Henan Academy of Big Data, Zhengzhou University, Zhengzhou 450052

Received date: 2020-08-20

  Revised date: 2020-12-23

  Online published: 2021-04-22

Abstract

[Purpose/significance] Comparing users' perceptions of data intelligence and expert knowledge from the perspective of trust will help to understand the user's current trust status and differences between these two types of typical decision-making information sources, and then provide suggestions for the further application of data intelligence and the effective integration of data intelligence and expert knowledge. [Method/process] Based on the classic two-dimensional classification of trust, namely cognitive trust and emotional trust, a measurement scale including two pairs and four potential variables was designed. A total of 342 valid samples were collected by questionnaire survey. Descriptive statistics and paired sample t-test were employed for data analysis. [Result/conclusion] The study found that users' cognitive trust in data intelligence is significantly higher than expert knowledge, while their emotional trust in data intelligence is significantly lowerthan expert knowledge.

Cite this article

Liu Kunfeng , Li Yanhong , Zhang Xinyuan . A Comparative Empirical Study on Data Intelligence and Expert Knowledge from the Perspective of Trust[J]. Library and Information Service, 2021 , 65(6) : 110 -117 . DOI: 10.13266/j.issn.0252-3116.2021.06.012

References

[1] 赵星,乔利利,叶鹰. 面向数据智能和知识发现的图书情报学跨界拓展——数据-学术-创造整合论[J]. 中国图书馆学报,2020,46(6):16-25.
[2] 叶鹰. 图书情报学的学术思想与技术方法及其开新[J]. 中国图书馆学报,2019,45(2):15-25.
[3] 丁晓蔚,苏新宁. 基于区块链可信大数据人工智能的金融安全情报分析[J]. 情报学报,2019,38(12):1297-1309.
[4] 郭海玲,马红雨,许泽辉. 社会化媒体用户信息披露意愿影响模型构建与实证——以微信用户为例[J]. 图书情报工作,2019,63(15):111-120.
[5] 张薇薇,柏露. 众包社区用户持续使用行为研究——基于ECM-ISC和承诺信任理论[J]. 情报资料工作,2017(2):54-62.
[6] 百度百科. 数据智能[EB/OL].[2020-08-07]. https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%99%BA%E8%83%BD/6657122?fr=aladdin.
[7] 詹青龙,杨晶晶. 数据智能支撑的课堂教学管理跃迁研究[J]. 电化教育研究,2020,41(7):100-107.
[8] 吴俊杰,刘冠男,王静远,等. 数据智能:趋势与挑战[J]. 系统工程理论与实践,2020,40(8):2116-2149.
[9] TalkingData移动观象台. 2018数据智能生态报告[R/OL].[2020-08-07]. http://mi.talkingdata.com/report-detail.html?id=843.
[10] 唐晓波,郑杜,翟夏普. 基于大数据智能的竞争情报系统模型研究[J]. 情报理论与实践,2018,41(11):133-137,160.
[11] SERBAN O, THAPEN N, MAGINNIS B, et al. Real-time processing of social media with SENTINEL:a syndromic surveillance system incorporating deep learning for health classification[J]. Information processing & management, 2019, 56(3):1166-1184.
[12] LI S L. Deep adversarial model for musculoskeletal quality evaluation[J]. Information processing & management, 2020, 57(1):102146.
[13] MAQSOOD H, MEHMOOD I, MAQSOOD M, et al. A local and global event sentiment based efficient stock exchange forecasting using deep learning[J]. International journal of information management, 2020, 50:432-451.
[14] KIM J C, CHUNG K Y. Knowledge-based hybrid decision model using neural network for nutrition management[J]. Information technology and management, 2019:1-11.
[15] 马超,李纲,陈思菁,等. 基于多模态数据语义融合的旅游在线评论有用性识别研究[J]. 情报学报,2020,39(2):199-207.
[16] 董庆兴,李华阳,曹高辉,等. 基于深度学习的MOOC论坛探索型对话识别方法研究[J]. 图书情报工作,2019,63(5):92-99.
[17] 199IT. 新华三:2020人工智能发展报告白皮书[R/OL].[2020-12-20]. http://www.199it.com/archives/1050916.html.
[18] SUN T Q, MEDAGLIA R. Mapping the challenges of artificial intelligence in the public sector:evidence from public healthcare[J]. Government information quarterly, 2019, 36(2):368-383.
[19] COX A M, PINFIELD S, RUTTER S. The intelligent library:thought leaders' views on the likely impact of artificial intelligence on academic libraries[J]. Library hi tech, 2019, 37(3):418-435.
[20] WIESENBERG M, TENCH R. Deep strategic mediatization:organizational leaders' knowledge and usage of social bots in an era of disinformation[J]. International journal of information management, 2020, 51:102042.
[21] 马捷,吴琼,崔春. 领域专家知识在本体半自动构建中的作用机理研究[J]. 图书情报工作,2011,55(23):17-21.
[22] 刘浏,王东波,黄水清. 机器学习视角的人工智能研究回顾及对图书情报学的影响[J]. 图书与情报,2017(6):84-95.
[23] 许鹏程,毕强. 基于知识超网络的领域专家识别研究[J]. 数据分析与知识发现,2019,3(11):89-98.
[24] 郭飞,盛晓明. 专家信任的危机与重塑[J]. 科学学研究,2016, 34(8):1131-1136.
[25] 谢耘耕,万旋傲,刘璐,等. 中国居民社会信任度调查报告[J]. 新媒体与社会,2017(1):7-21.
[26] 周群,化柏林. 基于多源数据融合的科技决策需求主题识别研究[J]. 情报理论与实践,2019,42(3):107-113.
[27] SCHUETZ S, VENKATESH V. Research perspectives:the rise of human machines:how cognitive computing systems challenge assumptions of user-system interaction[J]. Journal of the Association for Information Systems, 2020, 21(2):460-482.
[28] BISWAL S, SUN H Q, GOPARAJU B, et al. Expert-level sleep scoring with deep neural networks[J]. Journal of the American Medical Informatics Association, 2018, 25(12):1643-1650.
[29] SINGH A, HAQUE A, ALAHI A, et al. Automatic detection of hand hygiene using computer vision technology[J]. Journal of the American Medical Informatics Association, 2020, 27(8):1316-1320.
[30] CHATURVEDI S S, TEMBHURNE J V, DIWAN T. A multi-class skin cancer classification using deep convolutional neural networks[J]. Multimedia tools and applications, 2020, 79(39):28477-28498.
[31] 王小宁,刘丽丽. 供需视角下农村精准信息服务扩散影响因素研究[J]. 情报科学,2020,38(3):93-100.
[32] HUO C G, ZHANG M, MA F C. Factors influencing people's health knowledge adoption in social media[J]. Library hi tech, 2018, 36(1):129-151.
[33] ASRAF M, AHMAD J, SHARIF W, et al. The role of continuous trust in usage of online product recommendations[J]. Online information review, 2020, 44(4):745-766.
[34] 孙玉伟,成颖,谢娟. 科研人员数据复用行为研究:系统综述与元综合[J]. 中国图书馆学报,2019,45(3):110-130.
[35] 方爱华,陆朦朦,刘坤锋. 虚拟社区用户知识付费意愿实证研究[J]. 图书情报工作,2018,62(6):105-115.
[36] MCALLISTER D J. Affect-and cognition-based trust as foundations for interpersonal cooperation in organizations[J]. Academy of management journal, 1995, 38(1):24-59.
[37] 杨付,刘军,王婷,等. 中国组织情境下员工职业发展过程中"边界困境"产生机理:工作不安全感的视角[J]. 南开管理评论,2019,22(6):176-187.
[38] 董颖,许正良,刘方,等. 移动社交网络用户对产品推荐信息反应意愿研究[J]. 图书情报工作,2016,60(23):111-118.
[39] FAN H M, LEDERMAN R. Online health communities:how do community members build the trust required to adopt information and form close relationships?[J]. European journal of information systems, 2018, 27(1):62-89.
[40] CHANG K C, HSU Y T, HSU C L, et al. Effect of tangibilization cues on consumer purchase intention in the social media context:regulatory focus perspective and the moderating role of perceived trust[J]. Telematics and informatics, 2019, 44:101265.
[41] STRAUB D, BOUDREAU M C, GEFEN D. Validation guidelines for IS positivist research[J]. Communications of the Association for Information Systems, 2004, 13(1):380-427.
[42] 罗立群,李广建. 智慧情报服务与知识融合[J]. 情报资料工作, 2019,40(2):87-94.
[43] 邱韵霏,李春旺. 智能情报分析模式:数据驱动型与知识驱动型[J]. 情报理论与实践, 2020,43(2):28-34.
[44] 查先进,张晋朝,严亚兰. 微博环境下用户学术信息搜寻行为影响因素研究——信息质量和信源可信度双路径视角[J]. 中国图书馆学报,2015,41(3):71-86.
Outlines

/