Smart Data Research:Concept Discrimination, Value Orientation, Key Technologies and Application Framework

  • Zhang Yunzhong ,
  • Liu Jialin
Expand
  • Department of Library, Information and Archives, Shanghai University, Shanghai 200444

Received date: 2020-12-25

  Revised date: 2021-02-08

  Online published: 2021-06-02

Abstract

[Purpose/significance] The Smart Data is a new concept in the field of data science under the development of "Smart Earth", which theoretical exploration and practical application are developing rapidly. Combing the cognitive veins of the academic circles, gathering consensus and analyzing differences is of great significance to clarify the theoretical system of smart data and promote the application and development of smart data. [Method/process] Based on extensive and in-depth reading of relevant literature in domestic and foreign fields, this study divided Smart Data into four aspects:conceptual connotation, value orientation, key technologies and application framework. Overall, this study summarized three conceptual perspectives, five connotation features, five types of value orientation, three clusters of key technologies and five application areas of smart data through comparison and analysis. [Result/conclusion] The study found that the essence of smart data lies in its canonical structure and value-added process. Smart data comes from data evolution or structural design, and this enriches its value orientation, making itself presents diversified composite value characteristics. Its technical system support the step-by-step "computable-understandable-conversational" data evolution, the core of its application framework lies in the precise realization of "data" and "user" intelligent interaction. In the future, the theoretical system of smart data still needs to be improved under the view of big "data science", centering on theoretical system construction, data rights governance, balanced development of technology, upgrading service levels, integrating theory and practice,etc.

Cite this article

Zhang Yunzhong , Liu Jialin . Smart Data Research:Concept Discrimination, Value Orientation, Key Technologies and Application Framework[J]. Library and Information Service, 2021 , 65(10) : 141 -150 . DOI: 10.13266/j.issn.0252-3116.2021.10.014

References

[1] BALAKRISHNA S,SOLANKI V K, GUNJAN V K,et al. Performance analysis of linked stream big data processing mechanisms for unifying IoT smart data[C]//GUNJAN V, GARCIA D V, CARDONA M, et al. ICICCT 2019- system reliability, quality control, safety, maintenance and management. Singapore:Springer, 2020:680-688.
[2] SEIFERT A, HOFER M,ALLEMAND M. Mobile data collection:smart, but not (yet) smart enough[EB/OL].[2020-12-24]. https://doi.org/10.3389/fnins.2018.00971.
[3] CLEVELAND H. Information as a resource[J]. Futurist, 1982, 16(6):34-39.
[4] ACKOFF R L. From data to wisdom[J]. Journal of applied systems analysis, 1989, 16(1):3-9.
[5] IAFRATE F. From big data to smart data[M]. London:ISTE Ltd, 2015:9.
[6] SCHÖCH C. Big? smart? clean? messy? data in the humanities[EB/OL].[2020-12-24].http://journalofdigitalhumanities.org/2-3/big-smart-clean-messy-data-in-the-humanities/.
[7] FRANCE R, RUMPE B. Modeling big smart data[J]. Software and system modeling, 2014, 13(2):457-458.
[8] CAVOUKIAN A, TOMKO G, BORRETT D,et al. The security architecture discipline as catalyst to effect secure smartdata design:employing abuse case elaboration for attack vector discovery and countermeasure determination[M]//HARVEY I, CAVOUKIAN A, TOMKO G,et al.Smartdata. New York:Springer, 2013:173-185.
[9] MICHAEL F. Turning big data into smart data[EB/OL].[2020-12-24].https://sloanreview.mit.edu/article/turning-big-data-into-smart-data/#article-authors.
[10] LENK A, BONORDEN L, HELLMANNS A, et al. Towards a taxonomy of standards in smart data[C]//HO H, OOI B, ZAKI M J,et al. 2015 IEEE international conference on big data. New York:IEEE, 2015:1749-1754.
[11] 王晓光.数字人文与智慧数据[J].上海高校图书情报工作研究, 2018, 28(2):24-25.
[12] 郑建明.专题:智慧公共文化服务研究[J].图书馆论坛, 2020, 40(9):13-13.
[13] HARVEY I. Perspectives on artificial intelligence:three ways to be smart[M]//HARVEY I, CAVOUKIAN A, TOMKO G, et al. Smartdata. New York:Springer, 2013:27-38.
[14] GARCIA-GIL D, LUENGO J, GARCIA S, et al. Enabling smart data:noise fifiltering in big data classifification[EB/OL].[2020-12-24]. https://arxiv.org/abs/1704.01770.
[15] 顾立平,陈新兰,张潇月,等.开放科研数据中的数据价值提升策略[J].图书馆论坛, 2020, 40(9):115-124.
[16] 李阳,孙建军.人文社科专题数据库建设规范化管理的若干问题[J].现代情报, 2019, 39(12):4-10.
[17] LUENGO J, GARCÍA-GIL D, RAMÍREZ-GALLEGO S, et al. Final thoughts:from big data to smart data[M]//JULIÁN L,DIEGO G, SERGIO R, et al. Big data preprocessing. Cham:Springer, 2020:183-186.
[18] CHOENNI S, BARGH M, ROEPAN C, et al. Privacy and security in smart data collection by citizens[J]. Smarter as the new urban agenda, 2016(11):349-366.
[19] MARR B. Why only one of the 5 Vs of big data really matters[EB/OL].[2020-12-24].https://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters/.
[20] TRACTENBERG R E, SELLERS K F."Small"Data[EB/OL].[2020-12-24]. https://doi.org/10.1007/978-3-319-32001-4_445-1.
[21] KITCHIN R. The data revolution:big data, open data, data infrastructures and their consequences[M]. THOUSAND OAKS. California:Sage Publications, 2014.
[22] IAFRATE F. A journey from big data to smart data[C].//KROB D, LONJON A, BENGHOZI P J, et al.Proceedings of the second international conference on digital enterprise design and management DED&M 2014. Cham:Springer, 2014:25-33.
[23] TRUNK A, BIRKEL H, HARTMANN E. On the current state of combining human and artificial intelligence for strategic organizational decision making[J/OL].[2020-12-24].https://rd.springer.com/article/10.1007%2Fs40685-020-00133-x.
[24] CUZZOCREA A, GRECO S. Flexible querying and analytics for smart cities and smart societies in the age of big data:overview of the FQAS 2019 international conference[C]//CUZZOCREA A, GRECO S, LARSEN H,et al. Flexible query answering systems. Cham:Springer, 2019:25-28.
[25] TOMKO G, BORRETT D, KWAN H, et al. Smartdata:make the data "think" for itself[J]. identity in the information society, 2010, 3(2):343-362.
[26] 王涛."数字史学":现状、问题与展望[J].江海学刊, 2017(2):172-176.
[27] 曾蕾,王晓光,范炜.图档博领域的智慧数据及其在数字人文研究中的角色[J].中国图书馆学报, 2018, 44(1):17-34.
[28] 杨林霞.面向科研用户的嵌入式智慧数据服务模式研究[J]. 图书馆, 2019(10):28-33.
[29] ELAGGOUNE Z, MAAMRI R, BOUSSEBOUGH I. A multi-agent framework for medical diagnosis driven smart data in a big data environment[C]//AUER M, TSIATSOS T. Proceedings of the 11th IMCL conference. Cham:Springer, 2018:720- 727.
[30] JAVAN M S, AKBARI M K. SmartData 4.0:a formal description framework for big data[J]. Journal of Supercomputing, 2019,75(7):3585-3620.
[31] CHEN J, DOSYN D, LYTVYN V, et al. Smart data integration by goal driven ontology learning[C]//ANGELOV P, MANOLOPOULOS Y, ILIADIS L,et al. Proceedings of the 2nd INNS conference on big data. Cham:Springer, 2016:283-292.
[32] DANH L P,HOAN N M Q,HUNG N Q,et al.The graph of things:a step towards the live knowledge graph of connected things[J]. Journal of web semantics, 2016(37/38):25-35.
[33] ZHANG C, CHEN D, TAO F, et al. Data driven smart customization[C]//BUTALA P, GOVEKAR E, VRABIC R.Proceeding of 52nd CIRP conference on manufacturing systems. Amsterdam:Elsevier, 2019:564-569.
[34] SOUKAYNA B, ILIAS C, MOHAMED B. Lean in information technology:produce the human before the software[C]//Khoukhi F. Proceedings of the international conference on advanced information technology, services and systems(AIT2S-18). Cham:Springer, 2019:273-283.
[35] GREG C.Smart data putting consumers in control of their data and enabling innovation[EB/OL].[2020-12-24]. https://www.gov.uk/government/consultations/smart-data-putting-consumers-in-control-of-their-data-and-enabling-innovation.
[36] KITCHIN R, LAURIAULT T P. Small data in the era of big data[J]. Geojournal, 2015, 80(4):463-475.
[37] 刘炜,叶鹰.数字人文的技术体系与理论结构探讨[J].中国图书馆学报, 2017, 43(5):32-41.
[38] 罗琳,顾新.智慧数据驱动的产学研协同创新知识管网研究[J].软科学,2017,31(6):15-18.
[39] ROMAN D, VU K.Enabling data markets using smart contracts and multi-party computation[M]//ABRAMOWICZ W, PASCHKE A. Business information systems workshops. Cham:Springer, 2019:258-263.
[40] 张杨燚,谢辉,毛进,等.面向城市数据画像构建的多源数据需求与融合方法研究[J].情报理论与实践, 2020, 43(6):88-96.
[41] CHAUDHRY N, YOUSAF M M. Architectural assessment of NoSQL and NewSQL systems[J]. Distributed parallel databases, 2020,38(4):881-926.
[42] CHAUDHRY N,YOUSAF M M, KHAN M T. Security assessment of data management systems for cyber physical system applications[J]. Journal of software:evolution and process, 2019, 32(3):ee2241.
[43] CASTONGUAY J, STEIN S S. Digital assets and blockchain:hackable, fraudulent, or just misunderstood[J]. Accounting perspectives, 2020, 19(4):363-387.
[44] 许鑫,杨佳颖.国外语义网研究现状与动向——基于2002-2018年ISWC会议[J]. 情报学报, 2020, 39(7):761-776.
[45] LANDI D. The image of the hyper city[J]. International journal for the semiotics of law, 2019, 32(3):533-548.
[46] LIETZ H. Drawing impossible boundaries:field delineation of social network science[J]. Scientometrics, 2020, 125(3):2841-2876.
[47] LONG C, YANG X, XU C. Cross-domain personalized image captioning[J]. Multimedia tools and application, 2020, 79(45-46):33333-33348.
[48] PICCIALLI F, CASOLLA G, CUOMO S,et al. Unsupervised learning on multimedia data:a cultural heritage case study. Multimedia tools and application, 2020, 79(45/46):34429-34442.
[49] REES D, LARAMEE R S. A Survey of Information Visualization Books[J]. Computer graphics forum, 2019, 38(1):610-646.
[50] MANEVITZ L M, FRID A.Cognition and neurocomputation[J]. Annals of mathematics and artificial intelligence, 2020, 88(11-12):1119-1123.
[51] ZHANG J, ZONG C. Neural machine translation:challenges, progress and future[J].Science china technological sciences,2020,63(10):2028-2050.
[52] LAST M, DANON G. Automatic question generation[J]. Wires data mining knowledge discovery, 2020, 10(6):e1382.
[53] 赵阳洋,王振宇,王佩,等.任务型对话系统研究综述[J].计算机学报,2020,43(10):1862-1896.
[54] 黄毅,冯俊兰,胡珉,等.智能对话系统架构及算法[J].北京邮电大学学报,2019,42(6):10-19.
[55] LUNTOVSKYY A, GLOBA L, SHUBYN B. From big data to smart data:the most effective approaches for data analytics[M]//ILCHENKO M, URYVSKY L, GLOBA L. Advances in information and communication technology and systems. Cham:Springer, 2020:23-40.
[56] FERRAG M A, MAGLARAS L, DERHAB A, et al. Authentication schemes for smart mobile devices:threat models, countermeasures, and open research issues[J]. Telecommunication systems, 2020, 73(2):317-348.
[57] IBTISSAM B,SAMIRA D, BOUABID E O, et al. Using genetic algorithm to improve classification of imbalanced datasets for credit card fraud detection[C]//KHOUKHI F, BAHAJ M, EZZIYYANI M. Proceedings of the International Conference on Advanced Information Technology, Services and Systems (AIT2S-18). Cham:Springer, 2019:220-229.
[58] ISSAOUI Y, KHIAT A, BAHNASSE A, et al. Toward smart logistics:engineering insights and emerging trends[J/OL].[2020-12-24].https://rd.springer.com/article/10.1007%2Fs11831-020-09494-2.
[59] AHONEN T. Enablers and barriers of smart data-based asset management services in industrial business networks[C]//MATHEW J, LIM C, MA L,et al. Proceedings of the 12th world congress on engineering asset management and the 13th international conference on vibration engineering and technology of machinery. Cham:Springer, 2019:51-60.
[60] NUAIMI E A,NEYADI H A,MOHAMED N,et al. Applications of big data to smart cities[J/OL].[2020-12-24].https://jisajournal.springeropen.com/articles/10.1186/s13174-015-0041-5.
[61] 刘婷婷,戴慎志,宋海瑜.智慧社会基础设施新类型拓展与数据基础设施规划编制探索[J]. 城市规划学刊, 2019(4):95-101.
[62] SUKHADIA A, UPADHYAY K, GUNDETI M. et al. Optimization of smart traffic governance system using artificial intelligence[J/OL].[2020-12-24]. https://rd.springer.com/article/10.1007/s41133-020-00035-x.
[63] 马亚雪,李纲,谢辉,等.数字空间视角下的城市数据画像理论思考[J].情报学报, 2019, 38(1):58-67.
[64] ISMAGILOVA E, HUGHES L, RANA N P, et al. Security, privacy and risks within smart cities:literature review and development of a smart city interaction framework[J/OL].[2020-12-24]. https://doi.org/10.1007/s10796-020-10044-1.
[65] BIBRI S E, KROGSTIE J. Environmentally data-driven smart sustainable cities:applied innovative solutions for energy efficiency, pollution reduction, and urban metabolism[J/OL].[2020-12-24]. https://energyinformatics.springeropen.com/articles/10.1186/s42162-020-00130-8.
[66] 糜泽花,钱爱兵.智慧医疗发展现状及趋势研究文献综述[J].中国全科医学, 2019, 22(3):366-370.
[67] 郑建明,孙红蕾.智慧公共文化服务发展战略[J].图书馆论坛, 2020, 40(9):13-19.
[68] LEI S.Construction of intelligent library self-service and management system of college[C]//YANG C T, PEI Y, CHANG J W. Proceeding of innovative computing. Singapore:Springer, 2020:341-348.
[69] ROUHI R, BERTINI F, MONTESI D. Shared images and camera fingerprinting may lead to privacy issues[M]//BOURLAI T, KARAMPELAS P, PATEL V M.Securing social identity in mobile platforms. Cham:Springer, 2020:3-19.
[70] KORZUN D, VARFOLOMEYEV A, YALOVITSYNA S, et al. Semantic infrastructure of a smart museum:toward making cultural heritage knowledge usable and creatable by visitors and professionals[J]. Personal and ubiquitous computing, 2017, 21(2):345-354.
[71] 王云弟,谢笑,谢阳群.数据环境下的数描客体概念探析[J].情报理论与实践, 2020, 43(7):69-74,94.
[72] BHATIA M, KAUR A. Quantum computing inspired framework of student performance assessment in smart classroom[J/OL].[2021-02-05] https://doi.org/10.1002/ett.4094.
[73] 宋宁远.面向智慧数据的科学知识图谱构建——以SciGraph为例[J].科技与出版, 2017(11):17-19.
[74] ALARIFI A, ALWADAIN A. An optimized cognitive-assisted machine translation approach for natural language processing[J]. Computing, 2020, 102(3):605-622.
[75] MANALIGOD H J T,DIÑO M J S,JO S,et al.Knowledge discovery computing for management[J]. Information technology and management, 2020, 21(2):61-62.
[76] 林丽珊.开发知识产品智慧服务科研一线[J].图书情报工作,2017,61(S1):73-76.
Outlines

/