[1] JIN J, LIU Y, JI P, et al. Review on recent advances in information mining from big consumer opinion data for product design[J]. Journal of computing and information science in engineering, 2019, 19(1):1-19.
[2] 邓斯予,耿骞,靳健,等. 基于产品评论分析的领域知识库构建与应用[J]. 情报理论与实践, 2019, 42(11):115-122,127.
[3] GENG Q, DENG S, JIA D, et al. Cross-domain ontology construction and alignment from online customer product reviews[J]. Information sciences, 2020, 531:47-67.
[4] CARDOSO S D, SILVEIRA M D, PRUSKI C. Construction and exploitation of an historical knowledge graph to deal with the evolution of ontologies[J]. Knowledge-based systems, 2020, 194(22):105508.
[5] 陈晶,刘钊,顾进广,等. 本体演化中基于TFOF的波及效应分析[J]. 武汉大学学报(理学版), 2020, 66(2):197-204.
[6] BENOMRANE S, SELLAMI Z, AYED M B. An ontologist feedback driven ontology evolution with an adaptive multi-agent system[J]. Advanced engineering informatics, 2016, 30(3):337-353.
[7] CHEN C, LIU Y, KUMAR M, et al. Energy consumption modelling using deep learning embedded semi-supervised learning[J]. Computers & industrial engineering, 2019, 135:757-765.
[8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[9] NAGIREDDI V S K, MISHRA S. An ontology based cloud service generic search engine[C]//International conference on computer science & education. Colombo:IEEE, 2013:335-340.
[10] CHEN X, CHEN H, BI X, et al. BioTCM-SE:A semantic search engine for the information retrieval of modern biology and traditional Chinese medicine[J]. Computational and mathematical methods in medicine, 2014,13(2):1-13.
[11] 刘紫玉,杨雨佳,张晓明,等. 基于DBpedia的领域本体进化方法研究[J]. 情报杂志, 2017, 36(6):160-166.
[12] 陈晶,刘钊,顾进广,等. 本体演化的波及效应计算优化研究[J]. 计算机应用研究, 2020, 37(8):2366-2370.
[13] 刘毅,王宇,杨德礼. 本体进化驱动的个性化语义搜索研究[J]. 情报学报, 2015, 34(10):1048-1055.
[14] 刘莹. 基于本体进化和知识检索联动的知识管理系统[J]. 情报科学, 2016, 34(4):62-67.
[15] HUANG C, CAI H, XU L, et al. Data-driven ontology generation and evolution towards intelligent service in manufacturing systems[J]. Future generation computer systems, 2019, 101:197-207.
[16] 刘伟童,刘培玉,刘文锋,等. 基于互信息和邻接熵的新词发现算法[J]. 计算机应用研究, 2019, 36(5):1293-1296.
[17] 郭理,张恒旭,王嘉岐,等. 基于Trie树的词语左右熵和互信息新词发现算法[J]. 现代电子技术, 2020, 43(6):65-69.
[18] 王煜,徐建民. 用于网络新闻热点识别的热点新词发现[J/OL]. 计算机应用:1-9[2020-09-12]. http://kns.cnki.net/kcms/detail/51.1307.TP.20200722.1337.002.html.
[19] 杜丽萍,李晓戈,于根,等. 基于互信息改进算法的新词发现对中文分词系统改进[J]. 北京大学学报(自然科学版), 2016, 52(1):35-40.
[20] 周霜霜,徐金安,陈钰枫,等. 融合规则与统计的微博新词发现方法[J]. 计算机应用, 2017, 37(4):1044-1050.
[21] 王馨,王煜,王亮. 基于新词发现的网络新闻热点排名[J]. 图书情报工作, 2015, 59(6):68-74.
[22] 陈梅婕,谢振平,陈晓琪,等. 专利新词发现的双向聚合度特征提取新方法[J]. 计算机应用, 2020, 40(3):631-637.
[23] 张华平,商建云. 面向社会媒体的开放领域新词发现[J]. 中文信息学报, 2017, 31(3):55-61.
[24] 王汀,冀付军,徐天晟. 一种面向中文网络百科非结构化信息的知识获取方法[J]. 图书情报工作, 2016, 60(13):126-133.
[25] 陈先来,韩超鹏,安莹,等. 基于互信息和逻辑回归的新词发现[J]. 数据分析与知识发现, 2019(8):105-113.
[26] 刘昱彤,吴斌,谢韬,等. 基于古汉语语料的新词发现方法[J]. 中文信息学报, 2019, 33(1):46-55.
[27] 赵志滨,石玉鑫,李斌阳. 基于句法分析与词向量的领域新词发现方法[J]. 计算机科学, 2019, 46(6):29-34.
[28] 黄文明,杨柳青青,任冲. 结合信息量和深度学习的领域新词发现[J]. 计算机工程与设计, 2019, 40(7):1903-1907,1914.
[29] GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW:a recurrent neural network for image generation[C]//ICML.15:proceedings of the 32nd international conference on international conference on machine learning. Lille:JMLR, 2015, 37:1462-1471.
[30] GRAVES A. Supervised sequence labelling with recurrent neural networks[M]//Studies in computational intelligence, SCI 385.Berlin:Springer, 2012:5-13.
[31] PALANGI H, DENG L, SHEN Y, et al. Deep sentence embed ding using long short-term memory networks:analysis and application to information retrieval[J]. IEEE/ACM transactions on audio, speech, and language processing, 2015, 24(4):694-707.
[32] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2020-09-16]. https://arxiv.org/pdf/1409.0473.pdf.
[33] 张华丽,康晓东,李博,等. 结合注意力机制的Bi-LSTM-CRF中文电子病历命名实体识别[J]. 计算机应用, 2020,40(S1):98-102.
[34] 李纲,潘荣清,毛进,等. 整合BiLSTM-CRF网络和词典资源的中文电子病历实体识别[J]. 现代情报, 2020, 40(4):3-12,58.
[35] MIKOLOV T. Distributed representations of words and phrases and their compositionality[J]. Advances in neural information processing systems, 2013, 26:3111-3119.
[36] 胡甜甜,但雅波,胡杰,等. 基于注意力机制的Bi-LSTM结合CRF的新闻命名实体识别及其情感分类[J]. 计算机应用, 2020, 40(7):1879-1883.
[37] STOJANOVIC L, MAEDCHE A, MOTIK B, et al. User-driven ontology evolution management[C]//Proceedings of the 13th international conference on knowledge engineering and knowledge management. Ontologies and the semantic Web. Berlin:Springer-Verlag:2002,285-300.
[38] NOY N F, CHUGH A, LIU W, et al. A framework for ontology evolution in collaborative environments[C]//International semantic web conference. Berlin:Springer, 2006.