KNOWLEDGE ORGANIZATION

Research on the Method of Multi-position Research Themes Recognition and Evolution Path

  • Wang Kang ,
  • Gao Jiping ,
  • Pan Yuntao ,
  • Chen Yue
Expand
  • 1. Institute of Science of Science and S&T Management & WISE Lab, Dalian University of Technology, Dalian 116024;
    2. Institute of Scientific and Technical Information of China, Beijing 100038

Received date: 2020-12-07

  Revised date: 2021-02-24

  Online published: 2021-06-10

Abstract

[Purpose/significance] The evolution path of scientific themes is of great significance for understanding the process of scientific development and predicting future development trends. In view of the defect that the existing research treats the topics on the evolution path equally, a new method of multi-position scientific topic identification and its evolution path is proposed. [Method/process] This method divides the topics of each time interval into four types: core-mature, edge-mature, edge-immature, and core-immature based on centripetal degree and density, and uses cosine similarity to divide different time interval themes are related to show the dynamic cross-evolution relationship between different types of scientific themes. [Result/conclusion] Taking the literature of 3D printing as an example, the development process of 3D printing technology was measured from four aspects: technology development stage, theme recognition, theme type division and theme evolution path. The results proved that this method is effective for scientific theme recognition and its evolution path display.

Cite this article

Wang Kang , Gao Jiping , Pan Yuntao , Chen Yue . Research on the Method of Multi-position Research Themes Recognition and Evolution Path[J]. Library and Information Service, 2021 , 65(11) : 113 -122 . DOI: 10.13266/j.issn.0252-3116.2021.11.012

References

[1] TONY H, STEWART T, KRISTIN T, et al.第四范式:数据密集型科学发现[M].潘教峰, 张晓林, 安培浚, 等译.北京:科学出版社, 2012.
[2] 敦帅,陈强.中国企业可持续发展研究:态势演进与主题演化[J].科学管理研究,2020,38(1):94-100.
[3] 杜丽君.学科交叉视角下的信息检索研究主题演化分析——以情报学和计算机科学为例[J].信息技术与信息化,2020(1):178-183.
[4] 王璐瑶,曲冠楠,李楠,等.中国科技管理研究的贡献、演进与展望——《科学学与科学技术管理》创刊40年文献计量与知识图谱分析[J].科学学与科学技术管理,2020,41(5):3-21.
[5] WU Y, JIN X, XUE Y Z, et al. Evaluation of research topic evolution in psychiatry using co-word analysis[J]. Medicine, 2017, 96(25): 7349.
[6] ONYANCHA O B. Forty-five years of lis research evolution, 1971-2015: an informetrics study of the author-supplied keywords[J]. Publishing research quarterly, 2018, 34(3): 456-470.
[7] HAN X Y. Evolution of research topics in lis between 1996 and 2019: an analysis based on latent dirichlet allocation topic model[J]. Scientometrics, 2020, 125(3): 2561-2595.
[8] HUANG C, YANG C, WANG S T, et al. Evolution of topics in education research: a systematic review using bibliometric analysis[J]. Educational review, 2020, 72(3): 281-297.
[9] 牛力,杜丽华.国内档案学学科主题网络构建与演化分析研究[J].档案学研究,2020(2):12-18.
[10] 王晓光,程齐凯.基于NEViewer的学科主题演化可视化分析[J].情报学报,2013,32(9):900-911.
[11] 谭春辉,熊梦媛.基于LDA模型的国内外数据挖掘研究热点主题演化对比分析[J].情报科学,2021,39(4):174-185.
[12] 颜端武,苏琼,张馨月.基于时序主题关联演化的科学领域前沿探测研究[J].情报理论与实践,2019,42(7):144-150.
[13] 周耀林,柴昊,赵跃.国际图情领域大数据研究现状与趋势探析[J].图书馆杂志,2019,38(12):16-27,44.
[14] TANCOIGNE E, BARBIER M, COINTET J P, et al. The place of agricultural sciences in the literature on ecosystem services[J]. Ecosystem services, 2014, 10(SI): 35-48.
[15] 赵跃,乔健.改革开放40年来中国档案学研究的全景透视——基于研究主题的挖掘与演化分析[J].档案学研究,2019(3):44-54.
[16] RULE A, COINTET J P, BEARMAN P S, et al. Lexical shifts, substantive changes, and continuity in state of the union discourse, 1790-2014[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): 10837-10844.
[17] MATOS F L, ROSS S W, HUVENNE V A I, et al. Canyons pride and prejudice: exploring the submarine canyon research landscape, a history of geographic and thematic bias[J]. Progress in oceanography, 2018, 169(12):6-19.
[18] MARVUGLIA A, HAVINGA L, HEIDRICH O, et al. Advances and challenges in assessing urban sustainability: an advanced bibliometric review[J]. Renewable & sustainable energy reviews, 2020, 124(3): 1-12.
[19] 岳丽欣,周晓英,陈旖旎.期刊论文核心研究主题识别及其演化路径可视化方法研究——以我国医疗健康信息领域期刊论文为例[J].图书情报工作,2020,64(5):89-99.
[20] 王伟. 信息计量学及其医学应用[M]. 北京:人民卫生出版社, 2014.
[21] 王海山.从波普尔、库恩的科学观看科学发展的规律性[J].科学学研究,1984(1):34-40.
[22] 何荣利.关于科学文献增长模型的思考[J].情报杂志,1994(6):40-41,64.
[23] CHEN C. Citespace II: detecting and visualizing emerging trends and transient pat terns in scientific literature[J]. Journal of the American Society for Information Science and Technology,2006,57(3): 359-377.
[24] VAN ECK N J, WALTMAN L. Software survey: vosviewer, a computer programfor bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538.
[25] 吴斌, 王柏, 杨胜琦. 基于事件的社会网络演化分析框架[J]. 软件学报, 2011, 22(7): 1488-1502.
[26] 钱铁云, 李青, 许承瑜. 面向科技主题发展分段的社区核心圈技术[J]. 计算机科学与探索, 2010, 4(2): 170-179.
[27] ULRIKE V L. A tutorial on spectral clustering[J]. Statistics and computing, 2007,17 (4): 1-32.
[28] HAN J W, KAMBER M. Data mining concepts and techniques[M]. New York: Academic Press, 2001.
[29] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical review e, 2004, 69(6): 1-15.
[30] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008,9(10): 1-12.
[31] LAW J, BAUIN S, COURTIAL J P, et al. Policy and the mapping of scientific change: a co-word analysis of research into environmental acidification[J]. Scientometrics, 1988, 14(3/4):251-264.
[32] LEE B, JEONG Y I.Mapping korea’s national R&D domain of robot technology by using the co-word analysis[J].Scientometrics, 2008, 77 (1):3-19.
[33] 田冶,曾庆慧,胡相华,等.3D打印技术及在组织工程领域的研究进展[J].中国医疗器械信息,2015,21(8):7-12.
Outlines

/