[1] LIU P, ZHANG L, GULLA J, et al. Dynamic attention-based explainable recommendation with textual and visual fusion[J]. Information processing & management, 2019, 57(6):102099.
[2] NAJI H. Improving recommendation system based on homophily principle and demographic[J]. Research journal of applied sciences, 2016, 11(10):1102-1106.
[3] ZHAO X, GUO Y, HE Y, et al. We know what you want to buy:a demographic-based system for product recommendation on microblogs[C]//ACM. KDD'14:proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM press, 2014:1935-1944.
[4] HUANG Y, LIU H, LI W, et al. Lifestyles in amazon:evidence from online reviews enhanced recommender system[J]. International journal of market research, 2020, 62(6):689-706.
[5] 侯银秀, 李伟卿, 王伟军, 等. 基于用户偏好与商品属性情感匹配的图书个性化推荐研究[J].数据分析与知识发现, 2017, 1(8):9-17.
[6] BI J, LIU Y, FAN Z, et al. A deep neural networks based recommendation algorithm using user and item basic data[J]. International journal of machine learning and cybernetics, 2020, 11(4):763-777.
[7] 梁昌勇, 范汝鑫, 陆文星, 等. 基于CNN-LFM模型的个性化推荐[J].计算机仿真, 2020, 37(3):399-404.
[8] BEENEN G, LING K, WANG X, et al. Using social psychology to motivate contributions to online communities[C]//ACM. Proceedings of the 2004 ACM conference on computer supported cooperative work. New York:ACM press, 2004:212-221.
[9] BENNETT P. Modeling the impact of short-term and long-term behavior on search personalization[C]//ACM. International ACM SIGIR conference on research & development in information retrieval. New York:ACM, 2012:185-194.
[10] CHU Y, LEE J. The experiential preferences of the online consumers in different internet shopping lifestyles towards online shopping websites[C]//Springer. International Conference on Human-Computer Interaction. Lisbon:Springer, 2007.
[11] DIAZ A, GOMEZ M, MOLINA A, et al. A segmentation study of cinema consumers based on values and lifestyle[J]. Journal of retailing and consumer services, 2018, 3(41):79-89.
[12] SARKI I, BHUTTO N, ARSHAD I, et al. Impact of Pakistani university student's cultural values and lifestyles on meaning of brands[J]. Interdisciplinary journal of contemporary research in business, 2012, 3(9):643-654.
[13] SWINYARD W R. Shopping mall customer values:the national mall shopper and the list of values[J]. Journal of retailing and consumer services, 1998, 5(3):167-172.
[14] 潘煜, 高丽, 王方华. 生活方式、顾客感知价值对中国消费者购买行为影响[J].系统管理学报, 2009, 18(6):601-607.
[15] 潘煜, 罗莉娟, 刘丹, 等. 基于网络生活方式的个人用户云服务购买意愿研究[J]. 系统管理学报, 2013, 22(4):477-486.
[16] XIONG L, CHEN X, HUANG T, et al. Temporal collaborative filtering with Bayesian probabilistic tensor factorization[C]//SDM. Proceedings of the SIAM international conference on data mining. Philadelphia:SIAM, 2010:211-222.
[17] 张婷婷, 王伟军, 黄英辉, 等. 基于屏幕视觉热区的中文短文本关键词实时提取方法[J]. 情报学报, 2016, 35(12):1178-1188.
[18] 刘凯. 基于屏幕视觉热区的用户偏好提取及个性化推荐[M]. 北京:科学出版社, 2016.
[19] HU L, LI C, SHI C, et al. Graph neural news recommendation with long-term and short-term interest modeling[J]. Information processing and management, 2020, 57(2):1-10.
[20] CHEN D, ZHANG R, YUAN B, et al. Sequence-aware recommendation with long-term and short-term attention memory networks[C]//IEEE. 201920th IEEE international conference on mobile data management. IEEE, 2019:437-442.
[21] XIANG L, YUAN Q, ZHAO S, et al. Temporal recommendation on graphs via long- and short-term preference fusion[C]//ACM. KDD'10:proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM press, 2010:723-732.
[22] 王微微, 夏秀峰, 李晓明. 一种基于用户行为反馈的兴趣度模型更新算法[J].辽宁大学学报(自然科学版), 2011, 38(1):40-45.
[23] GEDIKLI F, JANNACH D, GE M, et al. How should I explain? A comparison of different explanation types for recommender systems[J]. International journal of human-computer studies, 2014, 72(4):367-382.
[24] TINTAREV N, MASTHOFF J. Designing and evaluating explanations for recommender systems[M]. Boston:Recommender Systems Hand-book, Springer, 2011:479-510.
[25] ZHANG Y, CHEN X. Explainable recommendation:a survey and new perspectives[J]. ArXiv:information retrieval, 2018, 14(1):1-101.
[26] 余以胜, 韦锐, 刘鑫艳. 可解释的实时图书信息推荐模型研究[J].情报学报, 2019, 38(2):209-216.
[27] ZHANG Y, LAI G, ZHANG M, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]//ACM. International ACM SIGIR conference on research and development in information retrieval. New York:ACM press, 2014:83-92.
[28] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2021-04-01]. https://www.researchgate.net/publication/265252627_Neural_Machine_Translation_by_Jointly_Learning_to_Align_and_Translate.
[29] HU L, JIAN S, CAO L, et al. Interpretable recommendation via attraction modeling:learning multilevel attractiveness over multimodal movie contents[C]//AAAI. Twenty-seventh international joint conference on artificial intelligence IJCAI-18. Stockholm:AAAI Press, 2018, 7:3400-3406
[30] SEO S, HUANG J, YANG H, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]//ACM. RecSys'17:proceedings of the eleventh ACM conference on recommender systems. New York:ACM press, 2017, 8:297-305.
[31] YU J, ZHU H, CHANG C, et al. Influence function for unbiased recommendation[C]//ACM. SIGIR'20:the 43rd international ACM SIGIR conference on research and development in information retrieval. New York:ACM press, 2020, 7:1929-1932.
[32] 崔春生. 电子商务隐式浏览输入中的用户聚类分析[J].图书情报工作, 2011, 55(14):130-134.
[33] 王军, 张子柯. 基于社会化标签信息熵的个性化推荐算法[J].图书情报工作, 2013, 57(23):31-35.
[34] LIU H, HU Z, MIAN A, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-based systems, 2014, 56(1):156-166.
[35] DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM transactions on information systems, 2004, 22(1):143-177.
[36] POLAT H, DU W. SVD-based collaborative filtering with privacy[C]//ACM. SAC'05:proceedings of the 2005 ACM symposium on applied computing. New York:ACM press, 2005, 3:791-795.
[37] WU Y, LI Y, QIAN R. NE-UserCF:collaborative filtering recommender system model based on NMF and E2LSH[J]. International journal of performability engineering, 2017, 13(5):610-619.
[38] BI J W, LIU Y, FAN Z P. A deep neural networks based recommendation algorithm using user and item basic data[J]. International journal of machine learning and cybernetics, 2020, 11(4):763-777.
[39] DEVOOGHT R, BERSINI H. Long and short-term recommendations with recurrent neural networks[C]//ACM. UMAP'17:proceedings of the 25th conference on user modeling, adaptation and personalization. New York:ACM press, 2017, 7:13-21.