INFORMATION RESEARCH

Emotion-Driven Data Analysis of Mainstream Media Epidemic Information and Discourse Guidance Strategies

  • Zhang Dong ,
  • Wei Junbin
Expand
  • 1 School of Law, Ji Mei University, Xiamen 361021;
    2 College of Marxism, Harbin Engineering University, Harbin 150001

Received date: 2021-02-09

  Revised date: 2021-04-02

  Online published: 2021-07-21

Abstract

[Purpose/significance] Using COVID-19 online public opinion data to study the relationship between netizen attention, mood swings and mainstream media discourse guidance can provide a new perspective for online public opinion governance and media publicity in emergencies. [Method/process] Using "knowing the little things and seeing" to determine five groups of events with the highest social impact of domestic epidemic in the first half of 2020, the Scrap-Redis crawler framework based on Python language, the SnowNLP sentiment analysis model and the TF-IDF algorithm were used to sentiment analyze on more than 40,000 popular user comments reported by the People’s Daily, Xinhua Viewpoint, and Guangming.com’s three new media for government affairs related microblogs after the occurrence of these five groups of events, then sentiment statistics and visualization were performed for these five groups of events according to the dates and related topics. [Result/conclusion] The analysis shows that mainstream media reports play a positive role in relieving netizens’ emotions. By using discourse guidance strategies with playing the leading role of opinion leaders, actively responding to false information, tracking and reporting social hot spots, mainstream media can effectively calm the panic and dissatisfaction of Internet users, and guide the focus of public information to return to rationality. By improving the information response ability of mainstream media, seizing the discourse power of information reports, and enhancing the collaborative response ability of online public opinion, government departments build a systematic and comprehensive digital governance pattern of public emergencies, and accelerate the construction of a public opinion guidance work mechanism that adheres to the correct orientation.

Cite this article

Zhang Dong , Wei Junbin . Emotion-Driven Data Analysis of Mainstream Media Epidemic Information and Discourse Guidance Strategies[J]. Library and Information Service, 2021 , 65(14) : 101 -108 . DOI: 10.13266/j.issn.0252-3116.2021.14.012

References

[1] 中共中央宣传部.习近平总书记系列重要讲话读本[M].北京:学习出版社,2016:204.
[2] 李俊卿,张泽一.互联网背景下我国意识形态表征、安全风险及防范[J].思想理论教育导刊, 2016(10):85-89.
[3] 弗洛伊德,徐洋.论文明[M].北京:国际文化出版公司,2000:219.
[4] 彭剑.政治传播话语:概念界定及创新表达[J].编辑之友,2021(1):66-69,80.
[5] 蒋明敏.情感视域下突发公共事件网络舆情的治理策略[J].江西社会科学,2020(12):190-198.
[6] 邢鹏飞,李鑫鑫.重大疫情防控中网络舆情形成机制及引导策略研究——基于新冠肺炎疫情期间网络舆情文本的质性分析[J].情报杂志,2020(7):67-74,158.
[7] 刘继,武梦娇.基于贝叶斯网络的网络舆情态势评估分析——以"新冠肺炎疫情"事件为例[J].情报杂志,2021(3):187-192,103.
[8] 杜毅贤,徐家鹏,钟琳颖,等.网络舆情态势及情感多维特征分析与可视化——以COVID-19疫情为例[J].地球信息科学学报,2021(2):318-330.
[9] 崔金栋,陈思远,李晨雨.基于大数据的多类型网络谣言类型平息方式实证研究——以"新冠肺炎疫情期间谣言"为例[J].情报理论与实践,2021(2):1-15.
[10] 王馨悦,刘畅.重大突发公共卫生事件中公众信息搜寻行为影响因素探究[J].图书情报工作, 2020,64(21):77-89.
[11] 曾祥敏,张子璇.场域重构与主流再塑:疫情中的用户媒介信息接触、认知与传播[J].现代传播(中国传媒大学学报),2020(5):65-74,83.
[12] 庄穆妮,李勇,谭旭,等.基于BERT-LDA模型的新冠肺炎疫情网络舆情演化仿真[J].系统仿真学报,2021(1):24-36.
[13] 胡峰.重大疫情网络舆情演变机理及跨界治理研究——基于"四点四阶段"演化模型[J].情报理论与实践, 2020(6):23-29,55.
[14] 张鑫,田雪灿,刘鑫雅.反复性视角下网络舆情风险评估指标体系研究[J].图书与情报,2020(6):123-135.
[15] 刘晓娟,王晨琳.基于政务微博的信息公开与舆情演化研究——以新冠肺炎病例信息为例[J].情报理论与实践,2021(2):57-63.
[16] 祁凯,韦晓玉,郑瑞.基于系统动力学模型的政务短视频网络舆情动力演化分析[J].情报理论与实践,2021(3):115-121,130.
[17] 曹树金,岳文玉.突发公共卫生事件微博舆情主题挖掘与演化分析[J].信息资源管理学报, 2020(6):28-37.
[18] 刘健,冯红骄,姚露露.突发公共卫生事件下的国际网络舆情分析与应对——以新型冠状病毒肺炎疫情为例[J].传媒,2020(16):91-93.
[19] 朱佳欣,李云峰.突发事件网络舆情中的话语失序及其治理[J].理论导刊,2020(7):112-118.
[20] 张薇.突发公共卫生事件与政务新媒体舆情应对话语研究——以新冠肺炎疫情事件为例[J].江海学刊,2020(2):12-17.
[21] 谢文诗.网络谣言的社会病理学研究——基于"知微事见"2018年235条谣言的分析[J].新媒体研究,2019(19):5-9,13.
[22] 知微事见[EB/OL].[2021-03-07].https://ef.zhiweidata.com/.
[23] 赵瑞杰,施勇,张涵,等.基于TF-IDF的Webshell文件检测[J].计算机科学,2020(S2):363-367.
[24] 张玉芳,彭时名,吕佳.基于文本分类TF-IDF方法的改进与应用[J].计算机工程,2006(19):76-78.
[25] KUANG Q, XU X. Improvement and application of TFIDF method based on text classification[C]//International conference onInternet technology and applications. Wuhan:IEEE, 2010.
[26] 高祥,赵京胜,宋梦雪.基于融合算法的短文本评论情感分析[J].信息技术与信息化,2019(11):180-184.
[27] 白鹤,汤迪斌,王劲林.分布式多主题网络爬虫系统的研究与实现[J].计算机工程,2009(19):13-16,19.
[28] 丁晓阳,王兰成.网络论坛文本特征词权重计算优化方法研究[J].情报理论与实践,2021(5):187-192.
[29] 陈兴蜀,常天祐,王海舟,等.基于微博数据的"新冠肺炎疫情"舆情演化时空分析[J].四川大学学报(自然科学版),2020(2):409-416.
[30] 周欢,马浩南,刘嘉.融合情感分析和概率语言的影视推荐算法研究[J].情报理论与实践, 2020(6):180-186.
[31] 赵雪芹,蔡铨,王青青.重大突发公共卫生事件的网络舆情传播机制研究及反思——以新冠肺炎疫情为例[J].晋图学刊,2020(6):1-8,34.
[32] 张志安,彭璐.混合情感传播模式:主流媒体短视频内容生产研究——以人民日报抖音号为例[J].新闻与写作, 2019(7):57-66.
[33] 刘效广,杨乃定.突发事件应急决策中的首因效应研究[J].中国安全科学学报,2013(11):170-176.
[34] 赵雪.新时代网络意识形态舆情引导机制论析[J].东北师大学报(哲学社会科学版),2021(2):97-102.
[35] 习近平.决胜全面建成小康社会夺取新时代中国特色社会主义伟大胜利——在中国共产党第十九次全国代表大会上的报告[M].北京:人民出版社,2017:8.
Outlines

/