INFORMATION RESEARCH

Evolutionary Analysis of Topic and Topic Clusters in Informal Communication from the Perspective of Conversation Analysis

  • Wang Xiao ,
  • Ma Chao ,
  • Zhai Shanshan
Expand
  • 1. School of Information Management, Central China Normal University, Wuhan 430079;
    2. College of Economic and Management, Zhejiang Normal University, Jinhua 321004

Received date: 2021-02-03

  Revised date: 2021-05-12

  Online published: 2021-09-01

Abstract

[Purpose/significance] Aiming at the limitations of current informal communication topic evolution research in both analysis level and measurement indicators, a universal evolution analysis method is proposed to explore the characteristics and patterns of topic evolution from micro and medium levels.[Method/process] Introducing the conversation analysis theory, taking Sina Microblog and Zhihu as examples, this paper revealed the evolutionary characteristics and patterns of informal information communication from the two dimensions of conversation content and discussion style through the analysis of running process of topics and topic clusters. Meanwhile, this paper designed the method of calculating and judging the continuity of a topic and explored measurement standard of the topic evolution.[Result/conclusion] The topic evolution analysis results show that the opinion group from Sina Microblog and Zhihu are obviously biased in topic content, and indicate the main perspectives of opinion group participating in the discussion of social focus event. The topic cluster evolution analysis find out that opinion group from Sina Microblog diversify and explore multiple topics in a certain range, while those from Zhihu always focus on the settled core topics. The difference in conversation content and discussion style between opinion groups in social media indicates the different role of Sina Microblog and Zhihu in informal information communication online.

Cite this article

Wang Xiao , Ma Chao , Zhai Shanshan . Evolutionary Analysis of Topic and Topic Clusters in Informal Communication from the Perspective of Conversation Analysis[J]. Library and Information Service, 2021 , 65(17) : 91 -100 . DOI: 10.13266/j.issn.0252-3116.2021.17.009

References

[1] 王臻皇, 陈思明, 袁晓如. 面向微博主题的可视分析研究[J]. 软件学报, 2018, 29(4):1115-1130.
[2] BEX R T, LUNDGREN L, CRIPPEN K J. Scientific Twitter:the flow of paleontological communication across a topic network[J/OL]. PLoS one, 2019, 14(7).[2021-05-06]. http://doi.org/10.1371/journal.pone.0219688.
[3] BOKAETF M H, SAMETI H, LIU Y. Unsupervised approach to extract summary keywords in meeting domain[C]//DUGELAY J L, SLOCK D. Proceedings of the 23rd European signal processing conference. Piscataway:IEEE, 2015:1406-1410.
[4] CHEN Y H, LU J L, MENG F T. Finding keywords in blogs:efficient keyword extraction in blog mining via user behaviors[J]. Expert systems with applications, 2014, 41(2):663-670.
[5] 谷莹, 李贺, 李叶叶, 等. 基于在线评论的企业竞争情报需求挖掘研究[J]. 现代情报, 2021, 41(1):24-31.
[6] 安璐, 李倩. 基于热点主题识别的突发事件次生衍生事件探测[J]. 情报资料工作, 2020, 41(6):26-35.
[7] ZHANG Y H, MAO W J, ZENG D, et al. Topic evolution modeling in social media short texts based on recurrent semantic dependent CRP[C]//BENJAMIN V, LI W F. Proceedings of 2017 IEEE international conference on intelligence and security informatics. Piscataway:IEEE.2017:119-124.
[8] 廖海涵, 王曰芬, 关鹏. 微博舆情传播周期中不同传播者的主题挖掘与观点识别[J]. 图书情报工作, 2018, 62(19):77-85.
[9] 梁晓贺, 田儒雅, 吴蕾, 等. 微博主题发现研究方法述评[J]. 图书情报工作, 2017, 61(14):141-148.
[10] 梁晓贺, 田儒雅, 吴蕾, 等. 基于超网络的微博相似度及其在微博舆情主题发现中的应用[J]. 图书情报工作, 2020, 64(11):77-86.
[11] SASAKI K, YISHIKAWA T, FURUHASHI T. Online topic model for Twitter considering dynamics of user Interests and topic trends[C]//MARTON Y. Proceedings of 2014 conference on empirical methods in natural language processing. Stroudsburg:ACL, 2014:1977-1985.
[12] LIU Y P, PENG H, LI J X, et al. Event detection and evolution in multi-lingual social streams[J/OL]. Frontiers of computer science, 2020, 14(5).[2021-05-06]. http://doi.org/10.1007/s11704-019-8201-6.
[13] DEHGHANI N, ASADPOUR M. SGSG:semantic graph-based storyline generation in Twitter[J]. Journal of information science, 2019, 45(3):304-321.
[14] GOYAL P, KAUSHIK P, GUPTA P, et al. Multilevel event detection, storyline generation, and summarization for Tweet streams[J]. IEEE transactions on computational social systems, 2020, 7(1):8-23.
[15] HUANG J J, PENG M, WANG H, et al. A probabilistic method for emerging topic tracking in microblog stream[J]. World Wide Web, 2017, 20(2):325-350.
[16] CAI H Y, HUANG Z, SRIVASTAVA D, et al. Indexing evolving events from Tweet streams[J]. IEEE transactions on knowledge and data engineering, 2015, 27(11):3001-3015.
[17] ABULAISH M, FAZIL M. Modeling topic evolution in Twitter:an embedding-based approach[J/OL]. IEEE access, 2018, 6.[2021-05-06]. http://doi.org/10.1109/ACCESS.2018.2878494.
[18] PRUSS D, FUJINUMA Y, DAUGHTON AR, et al. Zika discourse in the Americas:a multilingual topic analysis of Twitter[J/OL]. Plos one, 2019, 14(5).[2021-05-06]. http://doi.org/10.1371/journal.pone.0216922.
[19] 王臻皇, 陈思明, 袁晓如. 面向微博主题的可视分析研究[J]. 软件学报, 2018, 29(4):1115-1130.
[20] 刘雅姝, 张海涛, 徐海玲, 等. 多维特征融合的网络舆情突发事件演化话题图谱研究[J]. 情报学报, 2019, 38(8):798-806.
[21] SACKS H, SCHEGLOFF E A, JEFFORSON G. Simplest systematics for the organization of turn-talking for conversation[J]. Language, 1974, 50(4):696-735.
[22] 吴亚欣, 于国栋. 为会话分析正名[J]. 山西大学学报(哲学社会科学版), 2017, 40(1):85-90.
[23] 赵焱, 张旗伟, 徐蕊, 等. 超语及认同建构作为双语者的学习手段[J]. 现代外语, 2021(2):258-270.
[24] STOMMEL W, VAN GOOR H, SYOMMEL M. Other-attentiveness in video consultation openings:a conversation analysis of video-mediated versus face-to-face consultations[J]. Journal of computer-mediated communication, 2019, 24(6):275-292.
[25] AVISON D, BANKS P. Cross-cultural (mis)communication in IS offshoring:understanding through conversation analysis[J]. Journal of information technology, 2008, 23(4):249-268.
[26] 吴亚欣, 刘蜀. 请求行为之微妙性的序列组织研究[J]. 现代外语, 2020, 43(1):32-43.
[27] 彭欣, 张惟. 日常交谈中故事讲述的会话分析[J]. 山西大学学报(哲学社会科学版), 2019, 42(4):137-144.
[28] 卢恒, 张向先, 张莉曼, 等. 会话分析视角下虚拟学术社区用户交互行为特征研究[J]. 图书情报工作, 2020, 64(13):80-89.
[29] 巴志超, 李纲, 毛进, 等.微信群内部信息交流的网络结构、行为及其演化分析——基于会话分析视角[J]. 情报学报, 2018, 37(10):1009-1021.
[30] GU Y, LI X Y, HUANG K X, et al. Human conversation analysis using attentive multimodal networks with hierarchical encoder-decoder[C]//ACM. Proceedings of the 26th ACM multimedia conference. New York:ACM, 2018:537-545.
[31] HOUSLEY W, ALBERT S, STOKOE E. Natural action processing:conversation analysis and big interactional data[C]//ACM. Proceedings of the halfway to the future symposium. New York:ACM, 2019:1-4.
[32] KONO S, AIHARA K. Prototype of decision support based on estimation of group status using conversation analysis[C]//YAMAMOTO S. Proceedings of the 18th international conference on human-computer interaction. Berlin:Springer, 2016:40-49.
[33] 张星, 魏淑芬, 王莉, 等. 危机事件中的微博意见领袖影响因素实证研究[J]. 情报学报, 2015, 34(1):66-75.
[34] CUI L, PI D C. Identification of micro-blog opinion leaders based on user features and outbreak nodes[J]. International journal of emerging technologies in learning, 2017, 12(1):141-154.
[35] 安璐, 胡俊阳, 李纲. 突发事件情境下社交媒体高影响力用户画像研究[J]. 情报资料工作, 2020, 41(6):6-16.
[36] 郭晓利, 周自岚, 刘耀伟, 等. 基于DTS-ILDA模型和关联过滤的新闻话题演化分析[J]. 应用科学学报, 2017, 35(5):634-646.
Outlines

/