KNOWLEDGE ORGANIZATION

Prediction of Emerging Technologies from the Perspective of Outlier Patents——Based on Bert Model and Deep Neural Networks

  • Kong Dejing ,
  • Dong Fang ,
  • Chen Zijing ,
  • Liu Yuhan ,
  • Zhou Yuan
Expand
  • 1. School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876;
    2. School of Public Policy and Management, Tsinghua University, Beijing 100084;
    3. School of Mechanical Science and Engneering, Huazhong University of Science and Technology, Wuhan 430074

Received date: 2020-12-21

  Revised date: 2021-05-31

  Online published: 2021-09-01

Abstract

[Purpose/significance] Due to the advanced nature of emerging technologies, they are often marginalized at the initial stage of formation. Most of present researches forecast emerging technologies by analyzing the mainstream technology development path, which would neglect some research that disrupts existing technology routes. By analyzing outlier patents that are less similar to the mainstream technologies in the field, it can identify and forecast the future emerging technologies more effectively.[Method/process] This paper presented an outlier patent identification and emerging technology prediction method based on deep learning. Firstly, the Bert pre-trained model was used to construct the similarity network based on texts of patents and outlier patents identification. The relationship model between outlier patent indicators and technical influence was then built based on DNN model, thus realizing the fast and accurate emerging technology prediction using large-scale outlier patents. Finally, an empirical analysis was conducted in the field of numerical control system with all patents applied in the last ten years obtained from DI database.[Result/conclusion] The result of empirical analysis in the field of numerical control system not only verifies the validity of the model, but also has important guiding significance to the formulation of national technology development policy and the technology layout of enterprises in related fields.

Cite this article

Kong Dejing , Dong Fang , Chen Zijing , Liu Yuhan , Zhou Yuan . Prediction of Emerging Technologies from the Perspective of Outlier Patents——Based on Bert Model and Deep Neural Networks[J]. Library and Information Service, 2021 , 65(17) : 131 -141 . DOI: 10.13266/j.issn.0252-3116.2021.17.013

References

[1] 薛澜, 周源, 李应博. 战略性新兴产业创新规律与产业政策研究[M]. 北京:科学出版社, 2015:44-56.
[2] VALLE S, VÁZQUEZ-BUSTELO D. Concurrent engineering performance:incremental versus radical innovation[J]. International journal of production economics, 2009, 119(1):136-148.
[3] 付玉秀, 张洪石. 突破性创新:概念界定与比较[J]. 数量经济技术经济研究, 2004, 21(3):73-83.
[4] NOH H, SONG Y-K, LEE S. Identifying emerging core technologies for the future:case study of patents published by leading telecommunication organizations[J]. Telecommunications policy, 2016, 40(10/11):956-970.
[5] 李贺, 袁翠敏, 解梦凡. 专利文献中的睡美人现象分析与研究[J]. 图书情报工作, 2019, 63(6):64-74.
[6] 李静海, 许光文, 杨励丹, 等. 一种抑制氮氧化物的无烟燃煤方法及燃煤炉:CN 95102081[P]. 1998-05-20.
[7] SUGITANI H, MATSUDA H, IKEDA M. Liquid jet recording head:US 06/394787[P]. 1985-12-10.
[8] ROTOLO D, HICKS D, MARTIN B R. What is an emerging technology?[J]. Research policy, 2015, 44(10):1827-1843.
[9] 张国胜. 技术变革, 范式转换与战略性新兴产业发展:一个演化经济学视角的研究[J]. 产业经济研究, 2012(6):26-32.
[10] AHARONSON B S, SCHILLING M A. Mapping the technological landscape:measuring technology distance, technological footprints, and techny evolution[J]. Research policy, 2016, 45(1):81-96.
[11] YOON J, KIM K. Detecting signals of new technological opportunities using semantic patent analysis and outlier detection[J]. Entometrics, 2012, 90(2):445-461.
[12] SONG K, KIM K, LEE S. Identifying promising technologies using patents:a retrospective feature analysis and a prospective needs analysis on outlier patents[J]. Technological forecasting and social change, 2018, 128:118-132.
[13] 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7):165-170.
[14] ZHOU Y, DONG F, LIU Y, et al. Forecasting emerging technologies using data augmentation and deep learning[J]. Scientometrics, 2020, 123(1):1-29.
[15] CHO Y Y, JEONG G H, KIM S H. A Delphi technology forecasting approach using a semi-Markov concept[J]. Technological forecasting and social change, 1991, 40(3):273-287.
[16] LEE S, KIM W, KIM Y M, et al. The prioritization and verification of IT emerging technologies using an analytic hierarchy process and cluster analysis[J]. Technological forecasting and social change, 2014, 87:292-304.
[17] GEUM Y, LEE S, YOON B, et al. Identifying and evaluating strategic partners for collaborative R&D:index-based approach using patents and publications[J]. Technovation, 2013, 33(6/7):211-224.
[18] SONG B, SEOL H, PARK Y. A patent portfolio-based approach for assessing potential R&D partners:an application of the Shapley value[J]. Technological forecasting and social change, 2016, 103:156-165.
[19] LANJOUW J O, SCHANKERMAN M. Stylized facts of patent litigation:value, scope and ownership[J]. National bureau of economic research, 1997:w6297.
[20] STERNITZKE C, BARTKOWSKI A, SCHRAMM R. Visualizing patent statistics by means of social network analysis tools[J]. World patent information, 2008, 30(2):115-131.
[21] MEYER M. Does science push technology? Patents citing scientific literature[J]. Research policy, 2000, 29(3):409-434.
[22] NARIN F, NOMA E, PERRY R. Patents as indicators of corporate technological strength[J]. Research policy, 1987, 16(2):143-155.
[23] LANJOUW J O, PAKES A, PUTNAM J. How to count patents and value intellectual property:the uses of patent renewal and application data[J]. The journal of industrial economics, 1998, 46(4):405-432.
[24] ARISTODEMOU L, TIETZE F. The state-of-the-art on intellectual property analytics (IPA):a literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data[J]. World patent information, 2018, 55:37-51.
[25] KONG D, ZHOU Y, LIU Y, et al. Using the data mining method to assess the innovation gap:a case of industrial robotics in a catching-up country[J]. Technological forecasting and social change, 2017, 119:80-97.
[26] 周源, 董放, 刘宇飞. 融合新兴领域知识融合过程研究——以生物信息领域为例[J]. 图书情报工作, 2019, 63(8):127-134.
[27] HASSAN S-U, IMRAN M, IQBAL S, et al. Deep context of citations using machine-learning models in scholarly full-text articles[J]. Scientometrics, 2018, 117(3):1645-1662.
[28] ZHOU Y, DONG F, LIU Y, et al. Forecasting emerging technologies using data augmentation and deep learning[J]. Scientometrics, 2020, 123(1):1-29.
[29] GEUM Y, KIM C, LEE S, et al. Technological convergence of IT and BT:evidence from patent analysis[J]. Etri journal, 2012, 34(3):439-449.
[30] KIM G, BAE J. A novel approach to forecast promising technology through patent analysis[J]. Technological forecasting and social change, 2017, 117:228-237.
[31] ZHOU Y, LIN H, LIU Y, et al. A novel method to identify emerging technologies using a semi-supervised topic clustering model:a case of 3D printing industry[J]. Scientometrics, 2019, 120(1):167-185.
[32] 侯剑华, 朱晓清. 基于专利的技术预测评价指标体系及其实证研究[J]. 图书情报工作, 2014, 58(18):77-82.
[33] LEE C, KWON O, KIM M, et al. Early identification of emerging technologies:a machine learning approach using multiple patent indicators[J]. Technological forecasting and social change, 2018, 127:291-303.
[34] 曹艺文, 许海云, 武华维, 等. 基于引文曲线拟合的新兴技术主题的突破性预测——以干细胞领域为例[J]. 图书情报工作, 2020, 64(5):100-113.
[35] ZHANG Y, LU J, LIU F, et al. Does deep learning help topic extraction? a kernel k-means clustering method with word embedding[J]. Journal of informetrics, 2018, 12(4):1099-1117.
[36] DEVLIN J, CHANG M-W, LEE K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2021-05-31]. https://arxiv.org/pdf/1810.04805.pdf.
[37] YANG W, ZHANG H, LIN J. Simple applications of BERT for ad hoc document retrieval[EB/OL]. [2021-05-31]. https://arxiv.org/abs/1903.10972.pdf.
[38] BESSEN J. The value of US patents by owner and patent characteristics[J]. Research policy, 2008, 37(5):932-945.
[39] FERN?NDEZ-RIBAS A. International patent strategies of small and large firms:an empirical study of nanotechnology[J]. Review of policy research, 2010, 27(4):457-473.
[40] HAUPT R, KLOYER M, LANGE M. Patent indicators for the technology life cycle development[J]. Research policy, 2007, 36(3):387-398.
[41] BIERLY P, CHAKRABARTI A. Determinants of technology cycle time in the US pharmaceutical industry[J]. R&D management, 1996, 26(2):115-126.
[42] KAYAL A A, WATERS R C. An empirical evaluation of the technology cycle time indicator as a measure of the pace of technological progress in superconductor technology[J]. IEEE transactions on engineering management, 1999, 46(2):127-131.
[43] COZZENS S, GATCHAIR S, KANG J, et al. Emerging technologies:quantitative identification and measurement[J]. Technology analysis & strategic management, 2010, 22(3):361-376.
[44] DAY G S, SCHOEMAKER P J. Avoiding the pitfalls of emerging technologies[J]. California management review, 2000, 42(2):8-33.
[45] GUELLEC D, DE LA POTTERIE B V P. Applications, grants and the value of patent[J]. Economics letters, 2000, 69(1):109-114.
[46] MA Z, LEE Y. Patent application and technological collaboration in inventive activities:1980-2005[J]. Technovation, 2008, 28(6):379-390.
[47] MEYER M. Are patenting scientists the better scholars?An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology[J]. Research policy, 2006, 35(10):1646-1662.
[48] HARHOFF D, NARIN F, SCHERER F M, et al. Citation frequency and the value of patented inventions[J]. Review of economics and statistics, 1999, 81(3):511-515.
[49] 董放, 刘宇飞, 周源. 基于LDA-SVM论文摘要多分类新兴技术预测[J]. 情报杂志, 2017(7):40-45.
[50] CHEN J, YANG J, ZHOU H, et al. CPS modeling of CNC machine tool work processes using an instruction-domain based approach[J]. Engineering, 2015, 1(2):247-260.
[51] CHEN J, HU P, ZHOU H, et al. Toward intelligent machine tool[J]. Engineering, 2019, 5(4):679-690.
[52] SAFFAR R J, RAZFAR M. Simulation of end milling operation for predicting cutting forces to minimize tool deflection by genetic algorithm[J]. Machining science and technology, 2010, 14(1):81-101.
[53] LI Z, WANG Y, WANG K. A data-driven method based on deep belief networks for backlash error prediction in machining centers[J]. Journal of intelligent manufacturing, 2020, 31(7):1693-1705.
[54] 陈小丽. 硬脆性材料复合加工技术综述[J]. 航空发动机, 2010(3):57-60.
[55] POLLINI B, PIETRONI L, MASCITTI J, et al. Towards a new material culture. Bio-inspired design, parametric modeling, material design, digital manufacture[C]//Design in the digital age technology, Nature, Culture. Milano:Politecnica University Press, 2020:208-212.
Outlines

/