[1] 薛澜, 周源, 李应博. 战略性新兴产业创新规律与产业政策研究[M]. 北京:科学出版社, 2015:44-56.
[2] VALLE S, VÁZQUEZ-BUSTELO D. Concurrent engineering performance:incremental versus radical innovation[J]. International journal of production economics, 2009, 119(1):136-148.
[3] 付玉秀, 张洪石. 突破性创新:概念界定与比较[J]. 数量经济技术经济研究, 2004, 21(3):73-83.
[4] NOH H, SONG Y-K, LEE S. Identifying emerging core technologies for the future:case study of patents published by leading telecommunication organizations[J]. Telecommunications policy, 2016, 40(10/11):956-970.
[5] 李贺, 袁翠敏, 解梦凡. 专利文献中的睡美人现象分析与研究[J]. 图书情报工作, 2019, 63(6):64-74.
[6] 李静海, 许光文, 杨励丹, 等. 一种抑制氮氧化物的无烟燃煤方法及燃煤炉:CN 95102081[P]. 1998-05-20.
[7] SUGITANI H, MATSUDA H, IKEDA M. Liquid jet recording head:US 06/394787[P]. 1985-12-10.
[8] ROTOLO D, HICKS D, MARTIN B R. What is an emerging technology?[J]. Research policy, 2015, 44(10):1827-1843.
[9] 张国胜. 技术变革, 范式转换与战略性新兴产业发展:一个演化经济学视角的研究[J]. 产业经济研究, 2012(6):26-32.
[10] AHARONSON B S, SCHILLING M A. Mapping the technological landscape:measuring technology distance, technological footprints, and techny evolution[J]. Research policy, 2016, 45(1):81-96.
[11] YOON J, KIM K. Detecting signals of new technological opportunities using semantic patent analysis and outlier detection[J]. Entometrics, 2012, 90(2):445-461.
[12] SONG K, KIM K, LEE S. Identifying promising technologies using patents:a retrospective feature analysis and a prospective needs analysis on outlier patents[J]. Technological forecasting and social change, 2018, 128:118-132.
[13] 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7):165-170.
[14] ZHOU Y, DONG F, LIU Y, et al. Forecasting emerging technologies using data augmentation and deep learning[J]. Scientometrics, 2020, 123(1):1-29.
[15] CHO Y Y, JEONG G H, KIM S H. A Delphi technology forecasting approach using a semi-Markov concept[J]. Technological forecasting and social change, 1991, 40(3):273-287.
[16] LEE S, KIM W, KIM Y M, et al. The prioritization and verification of IT emerging technologies using an analytic hierarchy process and cluster analysis[J]. Technological forecasting and social change, 2014, 87:292-304.
[17] GEUM Y, LEE S, YOON B, et al. Identifying and evaluating strategic partners for collaborative R&D:index-based approach using patents and publications[J]. Technovation, 2013, 33(6/7):211-224.
[18] SONG B, SEOL H, PARK Y. A patent portfolio-based approach for assessing potential R&D partners:an application of the Shapley value[J]. Technological forecasting and social change, 2016, 103:156-165.
[19] LANJOUW J O, SCHANKERMAN M. Stylized facts of patent litigation:value, scope and ownership[J]. National bureau of economic research, 1997:w6297.
[20] STERNITZKE C, BARTKOWSKI A, SCHRAMM R. Visualizing patent statistics by means of social network analysis tools[J]. World patent information, 2008, 30(2):115-131.
[21] MEYER M. Does science push technology? Patents citing scientific literature[J]. Research policy, 2000, 29(3):409-434.
[22] NARIN F, NOMA E, PERRY R. Patents as indicators of corporate technological strength[J]. Research policy, 1987, 16(2):143-155.
[23] LANJOUW J O, PAKES A, PUTNAM J. How to count patents and value intellectual property:the uses of patent renewal and application data[J]. The journal of industrial economics, 1998, 46(4):405-432.
[24] ARISTODEMOU L, TIETZE F. The state-of-the-art on intellectual property analytics (IPA):a literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data[J]. World patent information, 2018, 55:37-51.
[25] KONG D, ZHOU Y, LIU Y, et al. Using the data mining method to assess the innovation gap:a case of industrial robotics in a catching-up country[J]. Technological forecasting and social change, 2017, 119:80-97.
[26] 周源, 董放, 刘宇飞. 融合新兴领域知识融合过程研究——以生物信息领域为例[J]. 图书情报工作, 2019, 63(8):127-134.
[27] HASSAN S-U, IMRAN M, IQBAL S, et al. Deep context of citations using machine-learning models in scholarly full-text articles[J]. Scientometrics, 2018, 117(3):1645-1662.
[28] ZHOU Y, DONG F, LIU Y, et al. Forecasting emerging technologies using data augmentation and deep learning[J]. Scientometrics, 2020, 123(1):1-29.
[29] GEUM Y, KIM C, LEE S, et al. Technological convergence of IT and BT:evidence from patent analysis[J]. Etri journal, 2012, 34(3):439-449.
[30] KIM G, BAE J. A novel approach to forecast promising technology through patent analysis[J]. Technological forecasting and social change, 2017, 117:228-237.
[31] ZHOU Y, LIN H, LIU Y, et al. A novel method to identify emerging technologies using a semi-supervised topic clustering model:a case of 3D printing industry[J]. Scientometrics, 2019, 120(1):167-185.
[32] 侯剑华, 朱晓清. 基于专利的技术预测评价指标体系及其实证研究[J]. 图书情报工作, 2014, 58(18):77-82.
[33] LEE C, KWON O, KIM M, et al. Early identification of emerging technologies:a machine learning approach using multiple patent indicators[J]. Technological forecasting and social change, 2018, 127:291-303.
[34] 曹艺文, 许海云, 武华维, 等. 基于引文曲线拟合的新兴技术主题的突破性预测——以干细胞领域为例[J]. 图书情报工作, 2020, 64(5):100-113.
[35] ZHANG Y, LU J, LIU F, et al. Does deep learning help topic extraction? a kernel k-means clustering method with word embedding[J]. Journal of informetrics, 2018, 12(4):1099-1117.
[36] DEVLIN J, CHANG M-W, LEE K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2021-05-31]. https://arxiv.org/pdf/1810.04805.pdf.
[37] YANG W, ZHANG H, LIN J. Simple applications of BERT for ad hoc document retrieval[EB/OL]. [2021-05-31]. https://arxiv.org/abs/1903.10972.pdf.
[38] BESSEN J. The value of US patents by owner and patent characteristics[J]. Research policy, 2008, 37(5):932-945.
[39] FERN?NDEZ-RIBAS A. International patent strategies of small and large firms:an empirical study of nanotechnology[J]. Review of policy research, 2010, 27(4):457-473.
[40] HAUPT R, KLOYER M, LANGE M. Patent indicators for the technology life cycle development[J]. Research policy, 2007, 36(3):387-398.
[41] BIERLY P, CHAKRABARTI A. Determinants of technology cycle time in the US pharmaceutical industry[J]. R&D management, 1996, 26(2):115-126.
[42] KAYAL A A, WATERS R C. An empirical evaluation of the technology cycle time indicator as a measure of the pace of technological progress in superconductor technology[J]. IEEE transactions on engineering management, 1999, 46(2):127-131.
[43] COZZENS S, GATCHAIR S, KANG J, et al. Emerging technologies:quantitative identification and measurement[J]. Technology analysis & strategic management, 2010, 22(3):361-376.
[44] DAY G S, SCHOEMAKER P J. Avoiding the pitfalls of emerging technologies[J]. California management review, 2000, 42(2):8-33.
[45] GUELLEC D, DE LA POTTERIE B V P. Applications, grants and the value of patent[J]. Economics letters, 2000, 69(1):109-114.
[46] MA Z, LEE Y. Patent application and technological collaboration in inventive activities:1980-2005[J]. Technovation, 2008, 28(6):379-390.
[47] MEYER M. Are patenting scientists the better scholars?An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology[J]. Research policy, 2006, 35(10):1646-1662.
[48] HARHOFF D, NARIN F, SCHERER F M, et al. Citation frequency and the value of patented inventions[J]. Review of economics and statistics, 1999, 81(3):511-515.
[49] 董放, 刘宇飞, 周源. 基于LDA-SVM论文摘要多分类新兴技术预测[J]. 情报杂志, 2017(7):40-45.
[50] CHEN J, YANG J, ZHOU H, et al. CPS modeling of CNC machine tool work processes using an instruction-domain based approach[J]. Engineering, 2015, 1(2):247-260.
[51] CHEN J, HU P, ZHOU H, et al. Toward intelligent machine tool[J]. Engineering, 2019, 5(4):679-690.
[52] SAFFAR R J, RAZFAR M. Simulation of end milling operation for predicting cutting forces to minimize tool deflection by genetic algorithm[J]. Machining science and technology, 2010, 14(1):81-101.
[53] LI Z, WANG Y, WANG K. A data-driven method based on deep belief networks for backlash error prediction in machining centers[J]. Journal of intelligent manufacturing, 2020, 31(7):1693-1705.
[54] 陈小丽. 硬脆性材料复合加工技术综述[J]. 航空发动机, 2010(3):57-60.
[55] POLLINI B, PIETRONI L, MASCITTI J, et al. Towards a new material culture. Bio-inspired design, parametric modeling, material design, digital manufacture[C]//Design in the digital age technology, Nature, Culture. Milano:Politecnica University Press, 2020:208-212.