SPECIAL TOPIC: Research on Online Rumors Governance and Personal Information Protection in Public Health Emergencies

Research on the Subject of Information to Refute Rumors of Public Health Emergencies in Social Media

  • Jia Ruonan ,
  • Wang Xiwei ,
  • Sun Yujiao
Expand
  • 1 School of Management, Jilin University, Changchun 130022;
    2 Research Center for Big Data Management, Jilin University, Changchun 130022;
    3 Cyberspace Governance Research Center, National Academy of Development and Security, Jilin University, Changchun 130022

Received date: 2021-04-12

  Revised date: 2021-08-05

  Online published: 2021-10-09

Abstract

[Purpose/significance] Analyzing the types, mutual relationships, community structure, and dissemination effects of the information on the Internet from multiple angles will help to discover the key information subjects and the effective spread of the information on the Internet. It plays an important role in strengthening the guidance of public opinion during public health emergencies and maintaining social stability.[Method/process] The article selected the "Shuanghuanglian" rumors during the new crown pneumonia epidemic, and built a network of rumor-defying subjects through Neo4j, then detected the network community using Louvain algorithm. Through content analysis and regression analysis, this paper analyzed the characteristics of the information content and the strategies of the rumor-defying subjects, and constructed the subject-content two-mode network, to explore how different information subjects and communities promote the dissemination of rumor-refuting information in social media, as well as effective methods and strategies for rumor-refuting.[Result/conclusion] The results of the study found that the government and mass media were the main actors in online rumor-refuting. The government most used the strategy of countering rumors, while the mass media did the opposite. Content characteristics have different effects on the effectiveness of rumor-refuting information dissemination.

Cite this article

Jia Ruonan , Wang Xiwei , Sun Yujiao . Research on the Subject of Information to Refute Rumors of Public Health Emergencies in Social Media[J]. Library and Information Service, 2021 , 65(19) : 16 -25 . DOI: 10.13266/j.issn.0252-3116.2021.19.002

References

[1] 人民网. 《2019年网络谣言治理报告》揭秘三大谣言高发领域[EB/OL].[2020-08-06].http://society.people.com.cn/n1/2019/1226/c1008-31524533.html.
[2] 童文胜,易柏慧.网络辟谣:国内研究进展与理论分析框架[J].情报杂志,2020,39(6):128-134,202.
[3] YANG J, LEE S. Framing the MERS information crisis:an analysis on online news media's rumour coverage[J]. Journal of contingencies and crisis management, 2020(4):1-13.
[4] PULIDO C M, RUIZ-EUGENIO L, REDONDO-SAMA G, et al. A new application of social impact in social media for overcoming fake news in health[J]. International journal of environmental research and public health, 2020, 17(7):2430-2445.
[5] HYE-JIN PAEK, HOVE T. Mediating and moderating roles of trust in government in effective risk rumor management:a test case of radiation-contaminated seafood in South Korea[J]. Risk analysis, 2019, 39(12):2653-2667.
[6] AHSAN M, KUMARI M, SHARMA T P, et al. Rumors detection, verification and controlling mechanisms in online social networks:a survey[J]. Online social networks and media, 2019, 14:100050.
[7] HAGEN L, KELLER T, NEELY S, et al. Crisis communications in the age of social media:a network analysis of Zika-related Tweets[J]. Social science computer review, 2018, 36(5):523-541.
[8] CONRADO S P, NEVILLE K, WOODWORTH S, et al. Managing social media uncertainty to support the decision making process during emergencies[J]. Journal of decision systems, 2016, 25(S1):171-181.
[9] WASZAK P M, KASPRZYCKAWASZAK W, KUBANEK A, et al. The spread of medical fake news in social media-the pilot quantitative study[J]. Health policy and technology, 2018, 7(2):115-118.
[10] MCKEE M, VAN SCHALKWYK M C, STUCKLER D, et al. The second information revolution:digitalization brings opportunities and concerns for public health[J]. European journal of public health, 2019, 29(S3):3-6.
[11] PAL A, CHUA A Y K, GOH H L. How do users respond to online rumor rebuttals?[J]. Computers in human behavior, 2019, 106:106243.
[12] AHMED, WASIM, et al. COVID-19 and the 5G conspiracy theory:social network analysis of Twitter data[J]. Journal of medical Internet research, 2020, 22(5):e19458.
[13] WANG S, LI Z, WANG Y, et al. Machine learning methods to predict social media disaster rumor refuters[J]. International journal of environmental research and public health, 2019,16(8):1452-1468.
[14] 宗乾进,黄子风.社交媒体辟谣信息的扩散机理研究——基于辟谣信息演化网络的纵向分析[J].现代情报,2017,37(9):44-52,121.
[15] 马超.健康议题辟谣社群的类别构成与社群结构研究——基于多主体谣言协同治理的视角[J].情报杂志,2019,38(1):96-105.
[16] 刘嘉琪,齐佳音.公共危机背景下的道德判断与谣言对抗行为生成路径研究——基于不同社交媒体平台的定性比较分析[J].情报杂志,2019,38(1):87-95,105.
[17] MEADOWS C Z, TANG L, LIU W. Twitter message types, health beliefs, and vaccine attitudes during the 2015 measles outbreak in California[J]. American journal of infection control, 2019, 47(11):1314-1318.
[18] NEWMAN M E. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23):8577-8582.
[19] 张海涛,周红磊,张鑫蕊,等.在线社交网络的社区发现研究进展[J].图书情报工作,2020,64(9):142-152.
[20] BARBERA P. Birds of the same feather Tweet together:bayesian ideal point estimation using Twitter data[J]. Political analysis, 2015, 23(1):76-91.
[21] 张海涛,刘雅姝,张枭慧,等.基于模块度的话题发现及网民情感波动研究——以新浪微博"中美间贸易摩擦"话题为例[J].图书情报工作,2019,63(4):6-14.
[22] TANG L, WANG X, LIU H, et al. Community detection via heterogeneous interaction analysis[J]. Data mining and knowledge discovery, 2012, 25(1):1-33.
[23] ZHANG Z, LUO T. Network capital, exploitative and exploratory innovations——from the perspective of network dynamics[J]. Technological forecasting and social change, 2020, 152:119910.
[24] SON J, LEE H K, JIN S, et al. Content features of Tweets for effective communication during disasters:a media synchronicity theory perspective[J]. International journal of information management, 2019, 45:56-68.
[25] 张廷玉.模因视角下自媒体谣言的传播机制研究——以"双黄连"事件为例[J].视听,2020(7):140-141.
[26] 新浪微博. #双黄连#[EB/OL].[2020-09-01]. https://s.weibo.com/topic?q=%E5%8F%8C%E9%BB%84%E8%BF%9E&pagetype=topic&topic=1&Refer=weibo_topic.
[27] 新浪微博. 微博2020年第一季度财报[EB/OL].[2020-09-01].https://hd.weibo.com/article/view/403.
[28] LI Y, ZHANG Y. Research on the simulation and coping strategies of the network public resonance phenomenon in colleges and universities[J]. Journal of information, 2019,38(12):107-113.
[29] LI S, LIU Z, LI Y, et al. Temporal and spatial evolution of online public sentiment on emergencies[J]. Information processing and management, 2020, 57(2):102177.
[30] HOU J, YU T, XIAO R. Structure reversal of online public opinion for the heterogeneous health concerns under NIMBY conflict environmental mass events in China[J]. Healthcare, 2020, 8(3):324-345.
[31] 王晰巍, 张柳, 韦雅楠,等. 社交网络舆情中意见领袖主题图谱构建及关系路径研究——基于网络谣言话题的分析[J]. 情报资料工作, 2020, 41(2):47-55.
[32] LI Z, ZHANG Q, DU X, et al. Social media rumor refutation effectiveness:evaluation, modelling and enhancement[J]. Information processing & management, 2021, 58(1):102420.
[33] RAO Q, ZHANG Z, LV Y, et al. Factors associated with influential health-promoting messages on social media:content analysis of Sina Weibo[J]. JMIR medical informatics, 2020, 8(10):e20558.
[34] FAN C, JIANG Y, YANG Y, et al. Crowd or hubs:information diffusion patterns in online social networks in disasters[J]. International journal of disaster risk reduction, 2020, 46:101498.
[35] GOEL S, WATTS D J, GOLDSTEIN D G. The structure of online diffusion networks[C]//Proceedings of the 13th ACM conference on electronic commerce. New York:ACM, 2012:623-638.
[36] MA Z, SUN A, CONG G, et al. On predicting the popularity of newly emerging hashtags in Twitter[J]. Journal of the Association for Information Science and Technology, 2013, 64(7):1399-1410.
Outlines

/