[1] AHN D. The stages of event extraction[C]//Proceedings of the workshop and annotating and reasoning about time and events.USA:Association for Computational Linguistics, 2006:1-8.
[2] CHEN C, NG V. Joint modeling for chinese event extraction with rich linguistic features[C]//Proceedings of COLING 2012.Mumbai:The COLING 2012 Organizing Committee, 2012:529-544.
[3] DODDINGTON G, MITCHELL A, PRZYBOCKI M A, et al. The automatic content extraction (ace) program-tasks, data, and evaluation[J]. Proc Lrec, 2004, 2(1):837-840.
[4] DEVLIN J, CHANG M, LEE K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics:human language technologies. Minneapolis:The NAACL-HLT Press, 2019:4171-4186.
[5] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Doha:Association for Computational Linguistics,2014:1746-1751.
[6] RILOFF E. An empirical study of automated dictionary construction for information extraction in three domains[J]. Artificial intelligence, 1996,85(1/2):101-134.
[7] RILOFF E. Automatically generating extraction patterns from untagged text[C]//Proceedings of the national conference on artificial intelligence. Oregon:Association for the Advancement of Artificial Intelligence,1996:1044-1049.
[8] FELDMAN R, ROSENFELD B, BAR-HAIM R, et al. The stock sonar-sentiment analysis of stocks based on a hybrid approach[EB/OL].[2021-11-10]. https://www.researchgate.net/publication/221016483_The_Stock_Sonar_-_Sentiment_Analysis_of_Stocks_Based_on_a_Hybrid_Approach.
[9] 罗明, 黄海量. 基于词汇-语义模式的金融事件信息抽取方法[J]. 计算机应用, 2018,38(01):84-90.
[10] 李响, 杨小琳, 魏勇, 等. 基于支持向量机的新闻事件类型识别[J]. 地理信息世界, 2019,26(02):73-78.
[11] HOU L, LI P, ZHU Q, et al. Event argument extraction based on CRF[C]//Proceedings of the 13th Chinese conference on Chinese lexical semantics.Berlin:Springer, 2012:32-39.
[12] CHEN Y, XU L, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing (volume 1:long papers).Beijing:Association for Computational Linguistics,2015:167-176.
[13] ZENG Y, YANG H, FENG Y, et al. A convolution biLSTM neural network model for chinese event extraction[C]//NLPCC-ICCPOL 2016.Kunming:Springer,2016:275-287.
[14] 陈斌, 周勇, 刘兵. 基于卷积双向长短期记忆网络的事件触发词抽取[J]. 计算机工程, 2019,45(01):153-158.
[15] 吴文涛, 李培峰, 朱巧明. 基于混合神经网络的实体和事件联合抽取方法[J]. 中文信息学报, 2019,33(08):77-83.
[16] NGUYEN T H, CHO K, GRISHMAN R. Joint event extraction via recurrent neural networks[C]//Proceedings of the 2016 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies.San Diego:Association for Computational Linguistics, 2016:300-309.
[17] 陈斌. 基于长短期记忆网络的事件抽取研究与应用[D]. 徐州:中国矿业大学, 2019.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//NIPS'17.New York:Curran Associates, 2017:6000-6010.
[19] ZHENG S, CAO W, XU W, et al. Doc2EDAG:An end-to-end document-level framework for chinese financial event extraction[C]//Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing.Hong Kong:Association for Computational Linguistics, 2019:337-346.
[20] YANG S, FENG D, QIAO L, et al. Exploring pre-trained language models for event extraction and generation[C]//Proceedings of the 57th annual meeting of the Association for Computational Linguistics.Florence:Association for Computational Linguistics, 2019:5284-5294.
[21] ZHAO L, LI L, ZHENG X. A BERT based sentiment analysis and key entity detection approach for online financial texts[C]//Proceedings of the 2021 IEEE 24th international conference on computer supported cooperative work in design, 2021:1233-1238.
[22] DU X, CARDIE C. Event extraction by answering (almost) natural questions[C]//Proceedings of the 2020 conference on empirical methods in natural language processing.Online:Association for Computational Linguistics, 2020:671-683.
[23] NGUYEN T H, GRISHMAN R. Graph convolutional networks with argument-aware pooling for event detection[C]//AAAI.Louisiana:Association for the Advancement of Artificial Intelligence,2018:5900-5907.
[24] CUI S, YU B, LIU T, et al. Event detection with relation-aware graph convolutional neural networks.[J]. CoRR, 2020,abs/2002.10757.
[25] YANG H, CHEN Y, LIU K, et al. DCFEE:A document-level chinese financial event extraction system based on automatically labeled training data[C]//Proceedings of ACL 2018, System Demonstrations.Melbourne:Association for Computational Linguistics, 2018:50-55.
[26] EIN-DOR L, GERA A, TOLEDO-RONEN O, et al. Financial event extraction using wikipedia-based weak supervision[J]. ArXiv, 2019,abs/1911.10783.
[27] ZHOU Z, MA L, LIU H. Trade the event:corporate events detection for news-based event-driven trading[C]//Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021.Online:Association for Computational Linguistics, 2021:2114-2124.
[28] RÖNNQVIST S, SARLIN P. Bank distress in the news:describing events through deep learning[J]. Neurocomputing, 2017,264:57-70.
[29] CARTA S, CONSOLI S, PIRAS L, et al. Event detection in finance using hierarchical clustering algorithms on news and tweets[J]. PeerJ computer science, 2021,7:438.
[30] CORRO L D, HOFFART J. Unsupervised extraction of market moving events with neural attention[J]. ArXiv, 2020,abs/2001.09466.
[31] ZHANG Y, WALLACE B. A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification[C]//Proceedings of the eighth international joint conference on natural language processing (volume 1:long papers).Taipei:Asian Federation of Natural Language Processing, 2017:253-263.
[32] XU H, LIU B, SHU L, et al. Double embeddings and CNN-based sequence labeling for aspect extraction[C]//Proceedings of the 56th annual meeting of the Association for Computational Linguistics (volume 2:short papers).Melbourne:Association for Computational Linguistics, 2018:592——598.
[33] MA X, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th annual meeting of the Association for Computational Linguistics (volume 1:long papers).Berlin:Association for Computational Linguistics, 2016:1064-1074.
[34] PENNINGTON J, SOCHER R, MANNING C. GloVe:global vectors for word representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing.Doha:Association for Computational Linguistics, 2014:1532-1543.
[35] NGUYEN T H, GRISHMAN R. Event detection and domain adaptation with convolutional neural networks[C]//Annual meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Conference. Beijing:Association for Computational Linguistics, 2015:365-371.
[36] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. ArXiv, 2013,abs/1301.3781.
[37] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989,1(4):541-551.
[38] BOUVRIE J. Notes on convolutional neural networks[EB/OL].[2021-11-10]. http://cogprints.org/5869/1/cnn_tutorial.pdf.
[39] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the eighteenth international conference on machine learning.San Francisco:Morgan Kaufmann Publishers, 2001:282-289.
[40] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]//Proceedings of the 2016 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies.San Diego:Association for Computational Linguistics, 2016:260-270.
[41] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. CoRR, 2016,abs/1511.07122.
[42] STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 conference on empirical methods in natural language processing.Copenhagen:Association for Computational Linguistics, 2017:2670-2680.
[43] 李妮, 关焕梅, 杨飘, 等. 基于BERT-IDCNN-CRF的中文命名实体识别方法[J]. 山东大学学报(理学版), 2020,55(01):102-109.