[Purpose/significance] As an exploratory research, this paper is oriented to the needs of scientific and technological information in the specialized discipline domain, and aims to realize the quantitative analysis of key semantics of the full text and the practical application shift from "information automation" to "knowledge automation". On the basis of previous studies from the perspective of knowledge element co-occurrence to explore the evolution mechanism of ESI research fronts, this paper further proposes a research front knowledge evolution analysis method based on knowledge element variation. [Method/process] Firstly, knowledge elements were represented as word vectors by word2vec word embedding model. Then, this paper calculated Euclidean distance of knowledge element vectors, and identified knowledge element clusters with similar semantic and pragmatic association by K-means clustering method. Finally, TF-IDF values of each knowledge element in the diachronic cluster were calculated. Through the quantitatively measurement of sudden changes in the importance of knowledge elements, the characteristics and rules of knowledge element variation were mined in the process of ESI research fronts evolution. [Result/conclusion] Through the comparative test of the detection results, it is found that the scientometric method based on knowledge element variation is not only a supplement and expansion of the previous research methods, but also makes the mining of the internal knowledge movement law of ESI research fronts more specific and detailed. Moreover, in the scope of time series, it is a strong evidence that the future development trend and key information signals of the ESI research fronts can be detected as soon as possible.
[1] 孙坦. 图书馆智能知识服务的未来[J]. 中国图书馆学报, 2021, 47(2):15-18.
[2] 宋宁远, 裴雷, 王春迎. 科学论文语义增强的研究进展与趋势研判[J]. 图书情报工作, 2021, 65(1):82-90.
[3] 曾建勋. "十四五"期间我国科技情报事业的发展思考[J]. 情报理论与实践, 2021, 44(1):1-7.
[4] 孙震, 冷伏海. 一种基于知识元共现的ESI研究前沿知识演进分析方法[J]. 情报学报, 2018, 37(11):1095-1113.
[5] 冷伏海, 孙震, 周秋菊. 《2015研究前沿》报告的研制实践与相关探讨[J]. 智库理论与实践, 2016, 1(2):79-87.
[6] Clarivate Analytics. Clarivate and the Chinese Academy of Sciences release annual joint report to identify 100+ research fronts[EB/OL].[2020-11-13]. https://clarivate.com/news/clarivate-and-the-chinese-academy-of-sciences-release-annual-joint-report-to-identify-100-research-fronts/.
[7] 王小梅, 邓启平, 李国鹏, 等. ESI研究前沿的科学图谱及在纳米领域的应用[J]. 图书情报工作, 2017, 61(12):106-112.
[8] 孙震, 冷伏海, 张晋辉. 基于知识元的科学计量方法及其实证研究[J]. 图书情报工作, 2017, 61(23):89-99.
[9] 孙震, 冷伏海. 基于知识元的新型科学计量范式探析[J]. 情报学报, 2017, 36(6):555-564.
[10] DING Y, SONG M, HAN J, et al. Entitymetrics:measuring the impact of entities[J]. Plos one, 2013, 8(8):e71416.
[11] SONG M, HAN N G, KIM Y H, et al. Discovering implicit entity relation with the gene-citation-gene network[J]. Plos one, 2013, 8(12):e84639.
[12] YU Q, DING Y, SONG M, et al. Tracing database usage:detecting main paths in database link networks[J]. Journal of informetrics, 2015, 9(1):1-15.
[13] LEE D, KIM W C, CHARIDIMOU A, et al. A bird's-eye view of alzheimer's disease research:reflecting different perspectives of indexers, authors, or citers in mapping the field[J]. Journal of Alzheimer's disease, 2015, 45(4):1207-1222.
[14] LEE K, KIM S Y, KIM E H J, et al. Comparative evaluation of bibliometric content networks by tomographic content analysis:an application to Parkinson's disease[J]. Journal of the Association for Information Science and Technology, 2017, 68(5):1295-1307.
[15] LI K, YAN E. Co-mention network of R packages:scientific impact and clustering structure[J]. Journal of informetrics, 2018, 12(1):87-100.
[16] 赵红州, 蒋国华. 知识单元与指数规律[J]. 科学学与科学技术管理, 1984(9):39-41.
[17] 贝尔纳. 科学研究的战略[C]//科学学译文集. 北京:科学出版社, 1980.
[18] 姚鑫, 丁艳丽, 张晓丹, 等. 钙钛矿太阳电池综述[J]. 物理学报, 2015, 64(3):135-142.
[19] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319.
[20] DHARANI S, MULMUDI H K, YANTARA N, et al. High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell[J]. Nanoscale, 2014, 6(3):1675-1679.
[21] HARRIS Z S. Distributional structure[J]. Word, 1954, 10(2/3):146-162.
[22] CHEN C, QIU X, JI S, et al. The synthesis of monodispersed AgBiS2 quantum dots with a giant dielectric constant[J]. CrystEngComm, 2013, 15(38):7644-7648.
[23] LIANG P W, LIAO C Y, CHUEH C C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced materials, 2014, 26(22):3748-3754.
[24] BERA A, SHEIKH A D, HAQUE M A, et al. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer:interface matters[J]. ACS applied materials & interfaces, 2015, 7(51):28404-28411.
[25] 董豪鹏. 有机无机杂化钙钛矿成膜前的界面修饰及其器件光伏特性[D]. 北京:清华大学, 2015.
[26] 马东超. 银纳米相吸收增强型CH3NH3PbI3钙钛矿薄膜及电池的制备研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[27] WANG Y K, YUAN Z C, SHI G Z, et al. Dopant-free spiro-triphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability[J]. Advanced functional materials, 2016, 26(9):1375-1381.
[28] PANG S, ZHOU Y, WANG Z, et al. Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3-CH3NH2 precursor pair[J]. Journal of the American Chemical Society, 2016, 138(3):750-753.
[29] 李建丰, 赵创, 张恒, 等. 利用PVP添加剂提高钙钛矿太阳能电池光伏性能[J]. 发光学报, 2016(1):56-62.
[30] XI J, WU Z, JIAO B, et al. Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells[J]. Advanced materials, 2017, 29(23):1606964.
[31] ERGEN O, GILBERT S M, PHAM T, et al. Graded bandgap perovskite solar cells[J]. Nature materials, 2017, 16(5):522.
[32] LI Z, DONG J, LIU C, et al. Improved optical field distribution and charge extraction through an interlayer of carbon nanospheres in polymer solar cells[J]. Chemistry of materials, 2017, 29(7):2961-2968.