INFORMATION RESEARCH

Research on Multi-Level Technology Evolution Trajectory Recognition Method Facing Semantic Information Analysis

  • Ma Ming ,
  • Wang Chao ,
  • Xu Haiyun ,
  • Gong Bingying ,
  • Zhou Yong
Expand
  • 1. Institute of Science and Technology for Development, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250014;
    2. Information Research Institute, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250014;
    3. School of Management, Shandong University of Technology, Zibo 255000

Received date: 2021-06-15

  Revised date: 2021-10-03

  Online published: 2022-03-01

Abstract

[Purpose/significance] Based on semantic information, identifying the technological evolution trajectory in a hierarchical and gradual manner is helpful to strengthen the understanding of technical details and improve the accuracy of trajectory recognition.[Method/process] Firstly, this paper extracted the SAO structure of patents and scientific papers, determined the research topic based on semantic information, and used the S curve to determine the technology life cycle. Secondly, with the help of the machine learning algorithms and social network analysis indicators, the technology evolution trajectory was extracted and filtered in different cycles and at multiple levels. Taking the field of hematopoietic stem cells as the object of empirical analysis, this study found that there was a significant difference between the research focus of patents and scientific papers related to the subject of genetic etiology in this field. The topic had not yet developed a unified evolutionary path, and the researches on immune system diseases and diabetes were a potential evolutionary trend in the future.[Result/conclusion] The method proposed in this paper gradually realizes the extraction and condensing of complex technological evolution path through objective numerical calculation results. While revealing the main technological development process, method proposed in this paper can objectively predict the technological evolution trend.

Cite this article

Ma Ming , Wang Chao , Xu Haiyun , Gong Bingying , Zhou Yong . Research on Multi-Level Technology Evolution Trajectory Recognition Method Facing Semantic Information Analysis[J]. Library and Information Service, 2022 , 66(4) : 103 -117 . DOI: 10.13266/j.issn.0252-3116.2022.04.011

References

[1] DOSI G. Technological paradigms and technological trajectories[J]. Research policy, 1982, 11(3):147-162.
[2] 李欣, 王静静, 杨梓, 等. 基于SAO结构语义分析的新兴技术识别研究[J]. 情报杂志, 2016, 35(3):80-84.
[3] 陈亮. 基于关联规则改进的技术演化分析方法研究[D]. 北京:中国科学院大学, 2013.
[4] CHOI S, YOON J, KIM K, et al. SAO network analysis of patents for technology trends identification:a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells[J]. Scientometrics, 2011, 88(3):863-883.
[5] ENA O, MIKOVA N, SARITAS O, et al. A methodology for technology trend monitoring:the case of semantic technologies[J]. Scientometrics, 2016, 108(3):1013-1041.
[6] DAIM T U, RUEDA G, MARTIN H, et al. Forecasting emerging technologies:use of bibliometrics and patent analysis[J]. Technological forecasting and social change, 2006, 73(8):981-1012.
[7] 陈亮, 杨冠灿, 张静, 等. 面向技术演化分析的多主路径方法研究[J]. 图书情报工作, 2015, 59(10):124-130,115.
[8] BHARGAVA S C, KUMAR A, MUKHERJEE A. A stochastic cellular automata model of innovation diffusion[J]. Technological forecasting and social change, 1993, 44(1):87-97.
[9] YOON B, PARK Y. A systematic approach for identifying technology opportunities:keyword-based morphology analysis[J]. Technological forecasting and social change, 2005, 72(2):145-160.
[10] 王山, 谭宗颖. 技术生命周期判断方法研究综述[J]. 现代情报, 2020, 40(11):144-153.
[11] GARFIELD E. Citation indexes for science:a new dimension in documentation through association of ideas[J]. Science, 1955, 122(3159):108-111.
[12] HUMMON N P, DOREIAN P. Connectivity in a citation network:the development of DNA theory[J]. Social networks, 1989, 11(1):39-63.
[13] VERSPAGEN B. Mapping technological trajectories as patent citation networks:a study on the history of fuel cell research[J]. Advances in complex systems, 2007, 10(1):93-115.
[14] LIU J S, LU L. An integrated approach for main path analysis:development of the hirsch index as an example[J]. Journal of the American Society for Information Science & Technology, 2014, 63(3):528-542.
[15] BATAGELJ V, KEJŽAR N, KORENJAK-ERNE S, et al. Analyzing the structure of U.S. patents network[C]//BATAGELJ V, BOCK H-H, FERLIGOJ A, et al. Data science and classification. Berlin:Springer, 2006:141-148.
[16] SU H-N, LEE P-C. Dynamic and quantitative exploration on technology evolution mechanism:the case of electrical conducting polymer nanocomposite[C]//Portland international center for management of engineering and technology proceedings.Portland:PICMET,2009:2433-2440.
[17] YOON B, PARK Y. A text-mining-based patent network:analytical tool for high-technology trend[J]. The journal of high technology management research, 2004, 15(1):37-50.
[18] KIM Y G, SUH J H, PARK S C. Visualization of patent analysis for emerging technology[J]. Expert systems with applications, 2008, 34(3):1804-1812.
[19] 方曙, 胡正银, 庞弘燊, 等. 基于专利文献的技术演化分析方法研究[J]. 图书情报工作, 2011, 55(22):42-46.
[20] CHENG Y, HUANG L, RAMLOGAN R, et al. Forecasting of potential impacts of disruptive technology in promising technological areas:elaborating the SIRS epidemic model in RFID technology[J]. Technological forecasting and social change, 2017, 117:170-183.
[21] 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1):10-17.
[22] WILLIAMS R, EDGE D. The social shaping of technology[J]. Research policy, 2004, 25(1):865-899.
[23] 黄鲁成, 王静静, 李欣, 等. 基于论文和专利的钙钛矿太阳能电池的技术机会分析[J]. 情报学报, 2016, 35(7):686-695.
[24] 周潇, 黄璐, 马婷婷. 大数据视角下的技术创新路径识别研究[J]. 科研管理, 2017, 38(10):1-9.
[25] National Library of Medicine-National Institutes of Health[EB/OL].[2021-10-13]. https://www.nlm.nih.gov/.
[26] 胡正银. 基于个性化语义TRIZ的专利技术挖掘研究[D]. 北京:中国科学院大学, 2015.
[27] FOSTER R N. Working the S-Curve:assessing technological threats[J]. Research management, 1986, 29(4):17-20.
[28] YOON J, PARK H, KIM K. Identifying technological competition trends for R&D planning using dynamic patent maps:SAO-based content analysis[J]. Scientometrics, 2013, 94(1):313-331.
[29] YANG C, HUANG C, SU J. An improved SAO network-based method for technology trend analysis:a case study of graphene[J]. Journal of informetrics, 2018, 12(1):271-286.
[30] BRIN S, PAGE L. The anatomy of a large-scale hypertextual web search engine[J]. Computer networks and ISDN systems, 1998, 30(1/7):107-117.
[31] ARASU A, CHO J, GARCIA-MOLINA H, et al. Searching the web[J]. ACM transactions on internet technology, 2001, 1(1):2-43.
[32] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social networks, 1978, 1(3):215-239.
[33] SMOJVER V, ŠTORGA M, POTOKI E. Determining the life cycle phase of a technology based on patent data[J]. Tehnicki vjesnik, 2019, 26(1):222-229.
[34] XU H Y, WINNINK J, YUE Z H, et al. Topic-linked innovation paths in science and technology[EB/OL].[2022-01-07]. https://www.sciencedirect.com/science/article/pii/S175115771930210X.
[35] SALTON G, WONG A, YANG C S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11):613-620.
[36] AHLERS C B, FISZMAN M, DEMNER-FUSHMAN D, et al. Extracting semantic predications from medline citations for pharmacogenomics[J]. Pacific symposium on biocomputing, 2007, 12:209-220.
Outlines

/