SPECIAL TOPIC:Research on Knowledge Aggregation and Knowledge Discovery of Historical Archives Resources from the Perspective of Digital Humanities

Storyline Construction and Application Exploration of Visualization, Emotion and Scene: Taking Zhang Xueliang's Oral History as an Example

  • Wang Ruan ,
  • Deng Jun
Expand
  • School of Business and Management, Jilin University, Changchun 130012

Received date: 2021-10-07

  Revised date: 2021-11-28

  Online published: 2022-04-15

Abstract

[Purpose/Significance] Combing the historical facts with storyline not only has a certain theoretical and practical guidance and significance for describing and grasping the direction of historical development, but also provides a new technology realization mode and innovative research perspective for knowledge discovery in the humanities field.[Method/Process] This study provided a research paradigm of storyline construction and visualization, emotion and scene based on text data, and made empirical exploration by combing the text of Zhang Xueliang's Oral History as the data source. This paper eused jieba word segmentation to clean the initial data source of Zhang Xueliang's Oral History to obtain experimental data source. LDA topic model was used to obtain topic distribution and t-SNE data dimension reduction was performed to present topic module. With the help of SnowNLP emotion dictionary, emotional feature words were mined, Zhang Xueliang's emotional evolution stage was sorted out, and the storyline was constructed.[Result/Conclusion] Through the construction of Zhang Xueliang's storyline, the dynamic mutual promotion of multi-dimensional elements such as characters, places, events, time and emotions is realized.

Cite this article

Wang Ruan , Deng Jun . Storyline Construction and Application Exploration of Visualization, Emotion and Scene: Taking Zhang Xueliang's Oral History as an Example[J]. Library and Information Service, 2022 , 66(7) : 17 -25 . DOI: 10.13266/j.issn.0252-3116.2022.07.002

References

[1] 唐家渝,刘知远,孙茂松.文本可视化研究综述[J].计算机辅助设计与图形学学报,2013,25(3):273-285.
[2] 刘炜,叶鹰.数字人文的技术体系与理论结构探讨[J].中国图书馆学报,2017,43(5):32-41.
[3] 朝乐门,张晨.数据故事化:从数据感知到数据认知[J].中国图书馆学报,2019,45(5):61-78.
[4] CHEN X. Why did John Herschel fail to understand polarization? The differences between object and event concepts[J]. Studies in history and philosophy of science,2003,34(3):491-513.
[5] 朝乐门.数据科学理论与实践[M].北京:清华大学出版社,2017.
[6] 丁家友,唐馨雨.数字人文视角下的数据叙事及其应用研究[J/OL].情报理论与实践:1-11[2021-11-24].http://kns.cnki.net/kcms/detail/11.1762.G3.20210903.1446.004.html.
[7] 伯迪克, 德鲁克, 伦恩费尔德,等.数字人文:改变知识创新与分享的游戏规则[M]. 马林青,韩若画,译.北京:中国人民大学出版社,2018:51.
[8] MUNROE R.XKCD[EB/OL].[2021-10-30].https://xkcd.com/#.
[9] NAZANIN D,MASOUD A.SGSG:semantic graph-based storyline generation in Twitter[J]. Journal of information science, 2019,45(3):304-321.
[10] BALET O, SUBSOL, G, TORGUET P. Virtual storytelling. using virtual reality technologies for storytelling[M].Cham:Springer,2001.
[11] BAL M. Story, text, and scripture-literary interests in biblical narrative-KORT, WA[J]. Theology today, 1989, 45(4):460-464.
[12] TANG T,RUBAB S,LAI J W,et al.iStoryline:effective convergence to hand-drawn storylines[J]. IEEE transactions on visualization & computer graphics, 2019,25(1):769-778.
[13] 佘玉轩,熊赟.基于贝叶斯网络的故事线挖掘算法[J].计算机工程,2018,44(3):55-59.
[14] SU J, DAI Q, GUERIN F, et al. BERT-hLSTMs:BERT and Hierarchical LSTMs for visual storytelling[J]. Computer speech & language, 2021,67:101169-101182.
[15] STAMATIADOU M E, THOIDIS I, VRYZAS N, et al. Semantic crowdsourcing of soundscapes heritage:a mojo model for data-driven storytelling[J]. Sustainability, 2021, 13(5):1-19.
[16] 李培,翁伟,林琛.中文微博故事线生成方法[J].中文信息学报,2016,30(3):143-151.
[17] OGAWA M, MA K L. Software evolution storylines[C]//Proceedings of the ACM 2010 symposium on software visualization. New York:ACM, 2010:35-42.
[18] TANAHASHI Y, Ma K L.Design considerations for optimizing storyline visualizations[J]. IEEE transactions on visualization & computer graphics, 2012, 18(12):2679-2688.
[19] 彭燕妮,樊晓平,赵颖,等.时间事件序列数据可视化综述[J].计算机辅助设计与图形学学报,2019,31(10):1698-1710.
[20] LIU S, WU Y, WEI E, et al. Story flow:tracking the evolution of stories[J]. IEEE transactions on visualization & computer graphics, 2013, 19(12):2436-2445.
[21] 毛辰阳.基于Spark平台及话单分析的人物关系可视化的研究与应用[D].北京:北京工业大学,2018.
[22] 王东辉,朱淼良,吴春明.基于时序结构图的视频流描述方法[J].计算机学报,2001(9):944-950.
[23] FELDMAN R.Techniques and applications for sentiment analysis[J]. Communications of the ACM, 2013, 56(4):82-89.
[24] 陈博,陈建龙.基于文本挖掘和可视化技术的主题自动标引方法——以《英雄格萨尔》为例[J].现代情报,2019,39(8):45-51,102.
[25] 欧阳剑.面向数字人文研究的大规模古籍文本可视化分析与挖掘[J].中国图书馆学报,2016,42(2):66-80.
[26] COPELAND S, DE MOOR A. Community digital storytelling for collective intelligence:towards a storytelling cycle of trust[J]. AI & society,2017,33(11):101-111.
[27] 王晰巍,贾若男,韦雅楠,等.社交网络舆情事件主题图谱构建及可视化研究——以校园突发事件话题为例[J].情报理论与实践,2020,43(3):17-23.
[28] ZOU X M,YANG J,ZHANG J P, et al.Microblog sentiment analysis using social and topic context[J]. Plos one, 2018, 13(2):e0191163.
[29] 张海涛,刘雅姝,张枭慧,等.基于模块度的话题发现及网民情感波动研究——以新浪微博"中美间贸易摩擦"话题为例[J].图书情报工作,2019,63(4):6-14.
[30] MCDOWELL K.Storytelling wisdom:story, information, and DIKW[J]. Journal of the Association for Information Science and Technology, 2021,72(10):1223-1233.
[31] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(4/5):993-1022.
[32] PONWEISER M,GRUN B.Finding scientific topics revisited[C]//Advances in latent variables.Berlin:Springer,2014:93-100.
[33] 关鹏,王曰芬.科技情报分析中LDA主题模型最优主题数确定方法研究[J].现代图书情报技术,2016(9):42-50.
[34] 蒋甜,刘小平,刘会洲.基于关键词关联度指标(KRI)进行LDA噪声主题过滤的方法研究[J].图书情报工作,2020,64(3):92-99.
[35] PANG B,LEE L.Opinion mining and sentiment analysis[J]. Foundations & trends in information retrieval, 2008, 2(1/2):130-135.
[36] 赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848.
[37] 山西省图书馆.西安事变数据库[EB/OL].[2021-10-30]. http://www.sxlib.org.cn/dfzy/xasb/rwz/zxrw_18592/zxl_18593/zxlcksj_18595/zxlksls_18606/.
[38] 马创新,陈小荷.文本的可视化知识表示[J].情报科学,2017,35(3):122-127.
[39] KOHLER M, SONDERMANN L, FORERO L, et al. Classifying and grouping narratives with convolutional neural networks, PCA and t-SNE[C]//Proceedings of the hybrid intelligent systems. Cham:Springer, 2020:22-30.
Outlines

/