SPECIAL TOPIC:Technology Forecasting Method and Practice Under the Background of Innovation-driven Strategy

Identifing and Tracing Technological Innovation Combination Based on Deep Learning and Semantic Mining

  • Zhou Xiao ,
  • Xu Yinbiao ,
  • Shi Yi
Expand
  • 1. School of Economics and Management, Xidian University, Xi'an 710126;
    2. College of Computer Science, Xi'an Shiyou University, Xi'an 710065

Received date: 2021-11-21

  Revised date: 2022-03-29

  Online published: 2022-06-01

Abstract

[Purpose/Significance] With the rapid development of strategic emerging technology industries, how to identify technological innovation combinations with potential synergistic effect and clarify the core innovation relationships in the combination is an important prerequisite for effectively planning industrial development routes and enhancing industrial competitive advantages.[Method/Process] Guided by the theory of technology portfolio evolution, this paper based on patent data and proposed a recognition scheme of technological innovation combinations and evolution relationships, which combined algorithms such as deep learning, SAO semantic mining and CFDP. The study protocol was divided into 3 steps:The first step was to design a domain search strategy based on keywords and patent classification numbers and completed the cleaning and word segmentation of the acquired data; Then the study got the word vector semantic network of the technical topics in the domain through Word2Vec, and used the CFDP algorithm to identify potential innovation elements and combination methods; Finally, it deeply explored the core SAO structures in each portfolio, classified their evolutionary relationships through the LSTM deep learning algorithm, and explored the core innovation approach of technology, so as to effectively discover the potential technology chance in the domain.[Result/Conclusion] Taking the field of speech recognition as an example, through in-depth mining of DII patent text data in this field, the study has identified and tracked five types of potential technological innovation combinations and core innovation methods. And the study finds that the current speech recognition field, which is in the smart chip design, speech recognition algorithms, new scenarios and applications, has great potential for technological innovation in China.

Cite this article

Zhou Xiao , Xu Yinbiao , Shi Yi . Identifing and Tracing Technological Innovation Combination Based on Deep Learning and Semantic Mining[J]. Library and Information Service, 2022 , 66(10) : 33 -44 . DOI: 10.13266/j.issn.0252-3116.2022.10.003

References

[1] 李晓曼,张学福,宋红燕,等.专利文献技术要素识别方法研究——以纳米肥料领域为例[J].图书情报工作,2020,64(6):59-68.
[2] 袁野,吴超楠,李秋莹.人工智能产业核心技术的国际竞争态势分析[J].中国电子科学研究院学报,2020,15(11):1128-1138.
[3] 卢小宾,杨冠灿,徐硕,等.计量与演化视角下的新兴技术识别研究进展评述[J].情报学报,2020,39(6):651-661.
[4] 杜建,孙轶楠,李永洁,等.从科学-技术交叉处识别创新前沿:方法与实证[J].情报理论与实践,2019,42(1):94-99.
[5] LIU J, WEI J, LIU Y. Technology forecasting based on topic analysis and social network analysis:a case study focusing on gene editing patents[J]. Journal of scientific and industrial research, 2021, 80(5):428-437.
[6] SCHOENMAKERS W, DUYSTERS G. The technological origins of radical inventions[J]. Research policy, 2010, 39(8):1051-1059.
[7] KARVONEN M, KASSI T. Patent citations as a tool for analysing the early stages of convergence[J]. Technological forecasting and social change, 2013, 80(6):1094-1107.
[8] SCHUMPETER J, BACKHAUS U. The theory of economic development[M]. Boston:Springer, 2003.
[9] ARTHUR W B. The nature of technology:what it is and how it evolves[M]. New York:Simon and Schuster, 2009.
[10] 孙冰.技术创新动因研究综述[J].华东经济管理,2010,24(4):143-147.
[11] 迟学芹,孙淑娴,魏雪艳,等.技术组合创新与检验医学[J].工企医刊,2013(3):276.
[12] 吴红.技术发明的组合模式探析——兼论大飞机C919属于中国创新[J].武汉科技大学学报(社会科学版),2018,20(4):456-460.
[13] 周丽英,冷伏海,左文革.基于创新团队的专利组合识别方法研究[J].情报理论与实践,2016,39(11):116-120.
[14] 张振刚,罗泰晔.基于知识组合理论的技术机会发现[J].科研管理,2020,41(8):220-228.
[15] 王贤文,徐申萌,彭恋,等.基于专利共类分析的技术网络结构研究:1971-2010[J].情报学报,2013,32(2):198-205.
[16] ZHOU X, HUANG L, ZHANG Y, et al. A hybrid approach to detecting technological recombination based on text mining and patent network analysis[J].Scientometrics,2019,121(2):699-737.
[17] 李欣,王静静,杨梓,等.基于SAO结构语义分析的新兴技术识别研究[J].情报杂志,2016,35(3):80-84.
[18] 苗红,王艳,黄鲁成,等.面向功能的技术融合趋势研究[J].情报杂志,2020, 39(5):51-58.
[19] MA T, ZHOU X, LIU J, et al. Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies[J]. Technological forecasting and social change, 2021, 173:121159.
[20] 黄璐,朱一鹤,张嶷.基于加权网络链路预测的新兴技术主题识别研究[J].情报学报,2019,38(4):335-341.
[21] 刘玉琴,汪雪锋,雷孝平.科研关系构建与可视化系统设计与实现[J].图书情报工作,2015,59(8):103-125.
[22] WANG X F, ZHANG S, LIU Y Q. ITGInsight-discovering and visualizing science, technology and innovation information for generating competitive technological intelligence[C]//Proceedings of the 1st workshop on AI+ informetrics (AII2021) co-located with the iConference. Aachen:RWTH Aachen University, 2021:202-219.
[23] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J].ArXiv,2013,abs/1301.3781.
[24] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
[25] 李文慧,张英俊,潘理虎.改进biLSTM网络的短文本分类方法[J].计算机工程与设计,2020,41(3):880-886.
[26] 上海艾瑞市场咨询有限公司.凝望璀璨星河.中国智能语音行业研究报告 2020年[C]//艾瑞咨询系列研究报告(2020年第2期).上海:上海艾瑞市场咨询有限公司,2020:81-127.
[27] 英钊,买永锋,王艳敏.智能家居语音控制系统发展展望[J].智能建筑电气技术,2019,13(1):30-33.
[28] 李洋.基于声音的电能表内异物检测技术研究[D].绵阳:西南科技大学,2019.
[29] 吴艳霞,梁楷,刘颖,等.深度学习FPGA加速器的进展与趋势[J].计算机学报,2019,42(11):2461-2480.
[30] LAURIE A H. Artificial intelligence:background, selected issues, and policy considerations[R]. Washington:Congressional Research Service, 2021.
[31] 高冬梅.寒武纪科技:中国"芯"希望?[EB/OL].[2022-03-28]. https://tech.sina.com.cn/csj/2019-04-06/doc-ihvhiewr 3525252.shtml.
[32] 国家标准化管理委员会.全国标准信息公共服务平台[EB/OL].[2022-03-28].http://std.samr.gov.cn/gb/search/gbDetailed?id=A365251D80590BE5E05397BE0A0A45F8.
[33] 刘庆峰,高建清,万根顺.语音识别技术研究进展与挑战[J].数据与计算发展前沿,2019,1(6):26-36.
[34] 中国科学技术信息研究所.国家科技报告服务系统[EB/OL].[2022-03-28]. https://www.nstrs.cn/index.
Outlines

/