INFORMATION RESEARCH

Research on the Characteristics of Knowledge Diffusion in Scientific Datasets——Taking the Gene Expression Dataset as an Example

  • Yang Ning ,
  • Zhang Zhiqiang
Expand
  • 1. Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041;
    2. Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190

Received date: 2021-12-16

  Revised date: 2022-03-12

  Online published: 2022-06-25

Abstract

[Purpose/Significance] By studying the characteristics and laws of knowledge diffusion of scientific datasets, this paper explores the practical role of scientific datasets in the development of discipline fields, so as to provide references for scientific and technological evaluation and management policy-making of scientific datasets. [Method/Process] Taking the datasets of GEO database and the full-text data of reused dataset in PubMed Central Database as the analysis objects, this paper analyzed the knowledge diffusion characteristics of scientific datasets by using content analysis method combined with knowledge diffusion indicators such as diffusion breadth, diffusion intensity and diffusion speed. [Result/Conclusion] The results show that the breadth and intensity of knowledge diffusion of scientific datasets are increasing day by day. Reusing data can accelerate the speed of knowledge diffusion, and China’s position in the field of global scientific data is improving.

Cite this article

Yang Ning , Zhang Zhiqiang . Research on the Characteristics of Knowledge Diffusion in Scientific Datasets——Taking the Gene Expression Dataset as an Example[J]. Library and Information Service, 2022 , 66(12) : 82 -91 . DOI: 10.13266/j.issn.0252-3116.2022.12.008

References

[1] CHEN C M,HICKS D. Tracing knowledge diffusion[J]. Scientometrics,2004,59(2):199-211.
[2] LEARNED W S. The American public library and the diffusion of knowledge[J]. Journal of the American Medical Association,1924,83(20):1611-1611.
[3] 黄鲁成,刘玉敏,吴菲菲,等.基于专利全引用信息的技术知识扩散特征研究——以石墨烯技术为例[J].科学学与科学技术管理,2017,38(4):149-161.
[4] 赵蓉英,魏绪秋.引证视角下的作者知识扩散规律探析[J].情报理论与实践,2016,39(8):12-17.
[5] 岳增慧,许海云.学科引证网络知识扩散特征研究[J].情报学报,2019,38(1):1-12.
[6] 王静静,叶鹰.国际数字人文研究中的跨学科知识扩散探析[J].大学图书馆学报,2021,39(2):45-51,61.
[7] LIU Y X,ROUSSEAU R. Knowledge diffusion through publications and citations:a case study using esi-fields as unit of diffusion[J]. Journal of the American Society for Information Science and Technology,2010,61(2):340-351.
[8] 俞立平,万晓云,项益鸣,等.一个评价学术期刊知识扩散深度的新指标——cjh指数[J].情报杂志,2019,38(8):145-150.
[9] NAKAMURA H, SUZUKI S, HIRONORI T, et al. Citation lag analysis in supply chain research[J]. Scientometrics,2011,87(2):221-232.
[10] 宋歌.学术创新的扩散过程研究[J].中国图书馆学报,2015,41(1):62-75.
[11] KISS I Z,BROOM M,CRAZE P,et al. Can epidemic models describe the diffusion of topics across disciplines?[J]. Journal of informetrics,2010,4(1):74-82.
[12] GAO X,GUAN J C. Network model of knowledge diffusion[J]. Scientometrics,2012,90(3):749-762.
[13] 魏绪秋,郭凤娇,于淼.微观视域下的图书知识扩散特征探析[J].情报科学,2021,39(3):37-43.
[14] 于晓彤,潘雪莲,华薇娜.知识图谱研究中的软件引用和扩散分析[J].情报资料工作,2019,40(2):19-29.
[15] 张玲玲,张宇娥,杜丽.国家社科基金项目成果视角下图情领域知识扩散研究[J].图书馆工作与研究,2017(10):60-66.
[16] PARK H,YOU S,WOLFRAM D. Informal data citation for data sharing and reuse is more common than formal data citation in biomedical fields[J]. Journal of the Association for Information Science and Technology,2018,69(11):1346-1354.
[17] 孟祥保,钱鹏.数据生命周期视角下人文社会科学数据特征研究[J].图书情报知识,2017(1):76-88.
[18] 丁文姚,李健,韩毅.我国图书情报领域期刊论文的科学数据引用特征研究[J].图书情报工作,2019,63(22):118-128.
[19] 刘亚男,刘江荣,肖明,等.基金项目论文中的科研数据引用行为研究[J].图书馆论坛,2019,39(7):75-83.
[20] ZHAO M N,YAN E J,LI K. Data set mentions and citations:a content analysis of full-text publications[J]. Journal of the Association for Information Science and Technology,2018,69(1):32-46.
[21] 闫小妮,田国祥,郭晓娟,等. Geo数据库架构、申请及数据提取方法与流程[J].中国循证心血管医学杂志,2019,11(2):134-137.
[22] 王雪,杨波.科学数据重复使用的学科差异性研究[J].情报杂志,2021,40(7):122-126+156.
[23] 阮继,王玥,刘谦,等. Pubmed central引用数据在中文科技期刊平台展示的实现[J].科技与出版,2020(3):125-128.
[24] ROWLANDS I. Journal diffusion factors:a new approach to measuring research influence[J]. Aslib proceedings,2002,54(2):77-84.
[25] FRANDSEN T F,ROUSSEAU R,ROWLANDS I. Diffusion factors[J]. Journal of documentation,2006,62(1):58-72.
[26] 邱均平,瞿辉,罗力.基于期刊引证关系的学科知识扩散计量研究——以我国"图书馆、情报、档案学"为例[J].情报科学,2012,30(4):481-485,491.
[27] 李江.基于引文的知识扩散研究评述[J].情报资料工作,2013(4):36-40.
[28] 汤易兵,黄祖庆,张宝友.基于引文网络的知识扩散和整合研究——以供应链研究为例[J].情报杂志,2012,31(1):119-122.
[29] OSIER M V,ZHAO H Y,CHEUNG K H. Handling multiple testing while interpreting microarrays with the gene ontology database[J]. Bmc bioinformatics,2004,5.
[30] GEO. Development stages of lentinula edodes[EB/OL].[2021-11-12]. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2167.
Outlines

/