[1] 杨信礼.社会发展动力机制的结构、功能与运行过程[J].中共中央党校学报, 2002, 6(4):28-33.
[2] 李丹.科学研究活动中的知识管理研究[D].武汉:武汉大学, 2005.
[3] 林定夷.问题与科学研究:问题学之探究[M].广州:中山大学出版社, 2006.
[4] BORNMANN L, MUTZ R. Growth rates of modern science:a bibliometric analysis based on the number of publications and cited references[J]. Journal of the Association for Information Science&Technology, 2015, 66(11):2215-2222.
[5] 科技部.关于破除科技评价中"唯论文"不良导向的若干措施(试行)[EB/OL].[2021-11-19]. https://www.cas.cn/zcjd/202002/t20200223_4735451.shtml.
[6] 中华人民共和国教育部.中共中央国务院印发《深化新时代教育评价改革总体方案》[EB/OL].[2021-11-19]. http://www.moe.gov.cn/jyb_xxgk/moe_1777/moe_1778/202010/t20201013_494381.html.
[7] 国务院办公厅.国务院办公厅关于完善科技成果评价机制的指导意见[EB/OL].[2021-08-02]. http://www.gov.cn/zhengce/content/2021-08/02/content_5628987.htm.
[8] 王海燕,潘云涛,马峥,等.基于科学研究问题成熟度的未来高影响力科技论文预测研究[J].情报学报, 2016, 35(1):36-47.
[9] 王玉琢,章成志.考虑全文本内容的算法学术影响力分析研究[J].图书情报工作, 2017, 61(23):6-14.
[10] 章成志,丁睿祎,王玉琢.基于学术论文全文内容的算法使用行为及其影响力研究[J].情报学报, 2018, 37(12):1175-1187.
[11] 钱佳佳,罗卓然,陆伟.基于问题-方法组合的科技论文新颖性度量与创新类型识别[J].图书情报工作, 2021, 65(14):82-89.
[12] 王艳艳,张均胜,乔晓东,等.基于问题-方法矩阵的文献新颖性评估方法[J].情报理论与实践, 2021, 44(2):90-95.
[13] NASAR Z, JAFFRY S W, MALIK M K. Information extraction from scientific articles:a survey[J]. Scientometrics, 2018, 117(3):1931-1990.
[14] ZHENG A, ZHAO H, LUO Z, et al. Improving on-line scientific resource profiling by exploiting resource citation information in the literature[J]. Information processing&management, 2021, 58(5):1-13.
[15] WESTERGAARD D, STRFELDT H-H, TØNSBERG C, et al. A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts[J]. PLoS computational biology, 2018, 14(2):e1005962.
[16] LIN J. Is searching full text more effective than searching abstracts?[J]. BMC bioinformatics, 2009, 10(1):1-15.
[17] 杜秀杰,赵大良.学术论文语言表达范式分析[J].编辑学报, 2018, 30(3):260-263.
[18] 程齐凯.学术文本的词汇功能识别[D].武汉:武汉大学, 2015.
[19] KOVAEVIC'A, KONJOVIC'Z, MILOSAVLJEVIC'B, et al. Mining methodologies from NLP publications:a case study in automatic terminology recognition[J]. Computer speech&language, 2012, 26(2):105-126.
[20] AUGENSTEIN I, DAS M, RIEDEL S, et al. Semeval 2017 task 10:scienceie-extracting keyphrases and relations from scientific publications[C]//Proceedings of the 11th international workshop on semantic evaluation. Vancouver:Association for Computational Linguistics, 2017:546-555.
[21] LUAN Y, HE L, OSTENDORF M, et al. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction[C]//Proceedings of the 2018 conference on empirical methods in natural language processing. Brussels:Association for Computational Linguistics, 2018:3219-3232.
[22] 索传军,赖海媚.学术论文问题知识元的类型与描述规则[J].中国图书馆学报, 2021, 47(2):95-109.
[23] GUPTA S, MANNING C D. Analyzing the dynamics of research by extracting key aspects of scientific papers[C]//Proceedings of 5th international joint conference on natural language processing. Chiang Mai:Asian Federation of Natural Language Processing, 2011:1-9.
[24] SINGH M, DAN S, AGARWAL S, et al. AppTechMiner:Mining applications and techniques from scientific articles[C]//Proceedings of the 6th international workshop on mining scientific publications. New York:Association for Computing Machinery, 2017:1-8.
[25] 蒋婷.学科领域本体学习及学术资源语义标注研究[D].南京:南京大学, 2017.
[26] HOUNGBO H, MERCER R E. Method mention extraction from scientific research papers[C]//Proceedings of the coling. Mumbai:The COLING 2012 Organizing Committee, 2012:1211-1222.
[27] 章成志,张颖怡.基于学术论文全文的研究方法实体自动识别研究[J].情报学报, 2020, 39(6):589-600.
[28] 王曰芬.文献计量法与内容分析法的综合研究[D].南京:南京理工大学, 2007.
[29] QASEMIZADEH B, SCHUMANN A-K. The ACL RD-TEC 2.0:a language resource for evaluating term extraction and entity recognition methods[C]//Proceedings of the tenth international conference on language resources and evaluation. Portoro:European Language Resources Association, 2016:1862-1868.
[30] BRACK A, D'SOUZA J, HOPPE A, et al. Domain-independent extraction of scientific concepts from research articles[C]//Proceedings of the advances in information retrieval. Lisbon:Springer, 2020:251-266.
[31] SOLDATOVA L N, KING R D. An ontology of scientific experiments[J]. Journal of the Royal Society Interface, 2006, 3(11):795-803.
[32] DESS D, OSBORNE F, RECUPERO D R, et al. Ai-kg:an automatically generated knowledge graph of artificial intelligence[C]//Proceedings of the international semantic Web conference. Online:Springer, 2020:127-143.
[33] SHUM S B, MOTTA E, DOMINGUE J. ScholOnto:an ontology-based digital library server for research documents and discourse[J]. International journal on digital libraries, 2000, 3(3):237-248.
[34] CICCARESE P, WU E, KINOSHITA J, et al. The SWAN scientific discourse ontology[J]. Journal of biomedical informatics, 2008, 41(5):739-751.
[35] GÁBOR K, BUSCALDI D, SCHUMANN A-K, et al. Semeval-2018 task 7:Semantic relation extraction and classification in scientific papers[C]//Proceedings of the 12th international workshop on semantic evaluation. New Orleans:Association for Computational Linguistics, 2018:679-688.
[36] TATEISI Y, OHTA T, PYYSALO S, et al. Typed entity and relation annotation on computer science papers[C]//Proceedings of the tenth international conference on language resources and evaluation. Portoro:European Language Resources Association, 2016:3836-3843.
[37] JAIN S, ZUYLEN M V, HAJISHIRZI H, et al. SciREX:a challenge dataset for document-level information extraction[C]//Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Online:Association for Computational Linguistics, 2020:7506-7516.
[38] MONDAL I, HOU Y, JOCHIM C. End-to-end construction of nlp knowledge graph[C]//Proceedings of the findings of the Association for Computational Linguistics. Online:Association for Computational Linguistics, 2021:1885-1895.
[39] 吴婷,孔芳.基于图注意力卷积神经网络的文档级关系抽取[J].中文信息学报, 2021, 35(10):73-80.
[40] NAN G, GUO Z, SEKULI I, et al. Reasoning with latent structure refinement for document-level relation extraction[C]//Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Online:Association for Computational Linguistics, 2020:1546-1557.
[41] 黄萃,陈静,陈惠玲.第四研究范式:数据驱动下的人文社科研究模式跃迁[J].中国高校科技, 2021(10):10-14.
[42] 储荷婷.图书馆情报学界的研究方法:实践与发展[J].国家图书馆学刊, 2014, 23(3):3-14.
[43] CHU H, KE Q. Research methods:what's in the name?[J]. Library&information science research, 2017, 39(4):284-294.
[44] HOWISON J, BULLARD J. Software in the scientific literature:Problems with seeing, finding, and using software mentioned in the biology literature[J]. Journal of the Association for Information Science and Technology, 2015, 67(9):2137-2155.
[45] HEFFERNAN K, TEUFEL S. Identifying problems and solutions in scientific text[J]. Scientometrics, 2018, 116(2):1367-1382.
[46] QASEMIZADEH B. Investigating context parameters in technology term recognition[C]//Proceedings of the coling workshop on synchronic and diachronic approaches to analyzing technical language. Dublin:Dublin City University and Association for Computational Linguistics, 2014:1-10.
[47] 程齐凯,李信.面向语义出版的学术文本词汇语义功能自动识别[J].数字图书馆论坛, 2017(8):24-31.
[48] TUAROB S, BHATIA S, MITRA P, et al. AlgorithmSeer:a system for extracting and searching for algorithms in scholarly big data[J]. IEEE transactions on big data, 2016, 2(1):3-17.
[49] DEVLIN J, CHANG M-W, LEE K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies. Minneapolis:Association for Computational Linguistics, 2019:4171-4186.
[50] BELTAGY I, LO K, COHAN A. SciBERT:a pretrained language model for scientific text[C]//Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing. Hong Kong:Association for Computational Linguistics, 2019:3615-3620.
[51] FÄRBER M, ALBERS A, SCHVBER F. Identifying used methods and datasets in scientific publications[C]//Proceedings of the SDU@AAAI. Online:AAAI, 2021:1-9.
[52] JIANG M, D'SOUZA J, AUER S, et al. Improving scholarly knowledge representation:evaluating bert-based models for scientific relation classification[C]//Proceedings of the international conference on Asian digital libraries. Online:Springer, 2020:3-19.
[53] LUAN Y, OSTENDORF M, Hajishirzi H. Scientific information extraction with semi-supervised neural tagging[C]//Proceedings of the 2017 conference on empirical methods in natural language processing. Copenhagen:Association for Computational Linguistics, 2017:2641-2651.
[54] WADDEN D, WENNBERG U, LUAN Y, et al. Entity, relation, and event extraction with contextualized span representations[C]//Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing. Hong Kong:Association for Computational Linguistics,2019:5784-5789.
[55] ZHONG Z, CHEN D. A frustratingly easy approach for joint entity and relation extraction[C]//Proceedings of the NAACL-HLT. Online:Association for Computational Linguistics, 2021:50-61.
[56] PETERS M, NEUMANNR M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies. New Orleans:Association for Computational Linguistics, 2018:2227-2237.
[57] KAMEDA A, UCHIYAMA K, Takeda H, et al. Extraction of semantic relationships from academic papers using syntactic patterns[C]//Proceedings of eKNOW. Nice:IARIA, 2013:32-35.
[58] MIWA M, SASAKI Y. Modeling joint entity and relation extraction with table representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Doha:Association for Computational Linguistics, 2014:1858-1869.
[59] BARIK B, MARSI E. NTNU-2 at SemEval-2017 task 10:Identifying synonym and hyponym relations among keyphrases in scientific documents[C]//Proceedings of the 11th international workshop on semantic evaluation. Vancouver:Association for Computational Linguistics, 2017:965-968.
[60] LEE J Y, DERNONCOURT F, SZOLOVITS P. MIT at SemEval-2017 Task 10:Relation extraction with convolutional neural networks[C]//Proceedings of the 11th international workshop on semantic evaluation. Vancouver:Association for Computational Linguistics, 2017:978-984.
[61] DAI Q, INOUE N, REISERT P, et al. Improving scientific relation classification with task specific supersense[C]//Proceedings of the 32nd Pacific Asia conference on language, information and computation. Hong Kong:Association for Computational Linguistics, 2018:129-138.
[62] PAN X, YAN E, CUI M, et al. How important is software to library and information science research?a content analysis of full-text publications[J]. Journal of informetrics, 2019, 13(1):397-406.
[63] 聂辉华,江艇,杨汝岱.中国工业企业数据库的使用现状和潜在问题[J].世界经济,2012,35(5):142-158.