THEORETICAL STUDY

Analysis of International Research Data Policy Guidelines

  • Qin Shun ,
  • Dai Baiqing
Expand
  • 1. School of Information Management, Wuhan University, Wuhan 430072;
    2. School of Information Resource Management, Renmin University of China, Beijing 100872

Received date: 2021-11-21

  Revised date: 2022-01-14

  Online published: 2022-07-06

Abstract

[Purpose/Significance] Analyzing the orientation and characteristics of international research data policy can provide an important basis for improving research data policy guarantee system and optimizing research data management and sharing work in China. [Method/Process] This article summarized the two orientations of international research data policy which named as "Integrated DLC-SH" and "Machine Actionable" by using the methods of case analysis and literature research, and analyzed and verified the similarities and differences between the two orientations by using the method of model sample. [Result/Conclusion] It is found that the orientation of "Integrated DLC-SH" adheres to the overall view of research data management and sharing, follows the basic framework of "organization management - business process", and aims to build a global collaborative data governance general plan. The orientation of "Machine Actionable" provides some guiding principles of sequential progression, and attaches importance to the auxiliary role of the data infrastructure, which is in order to realize the global layout of "Internet of Data". The two orientations are different in theoretical basis, core components and service objects, but there are basically the same in basic environment, implementation approaches and final goals, and the integration of the two orientations has become the mainstream trend at this stage. The useful enlightenment to China is drawn up, including: strengthening the guiding function of policy and integrating into the international working system, reshaping the working mechanism and process and improving the data governance pattern, and "combining humanities with technology" to build a "man-machine cooperation" ecology.

Cite this article

Qin Shun , Dai Baiqing . Analysis of International Research Data Policy Guidelines[J]. Library and Information Service, 2022 , 66(13) : 48 -60 . DOI: 10.13266/j.issn.0252-3116.2022.13.005

References

[1] ANDS. Outline of a research data management policy for Australian universities/institutions[EB/OL].[2022-01-14].https://rdc-drc.ca/wp-content/uploads/Institutional-Research-Data-Management-Policies.pdf.
[2] DCC. Five steps to developing a research data policy[EB/OL].[2022-01-14].http://www.dcc.ac.uk/sites/default/files/documents/publications/DCC-FiveStepsToDevelopingAnRDMpolicy.pdf.
[3] DLCM. Research data management policy template[EB/OL].[2022-01-14].https://www.dlcm.ch/download_file/force/68/372.
[4] 国务院办公厅.关于印发科学数据管理办法的通知[EB/OL].[2022-01-14].http://www.gov.cn/zhengce/content/2018-04/02/content_5279272.htm.
[5] 邢文明,洪芳林,李晓妍.科学数据管理体系的二维视角——《科学数据管理办法》解读[J].图书情报工作,2019,63(23):30-37.
[6] GO FAIR. FAIR principles[EB/OL].[2022-01-14].https://www.go-fair.org/fair-principles/.
[7] 邢文明,杨玲.中美科学数据政策比较——以《科学数据管理办法》和《促进联邦资助科研成果获取的备忘录》为例[J/OL].图书馆论坛[2022-01-14].http://kns.cnki.net/kcms/detail/44.1306.G2.20210621.1728.007.html.
[8] HODSON S, MOLLOY L. Current best practice for research data management policies[R].Paris:CODATA,2020:1-19.
[9] CORREA DA SILVA F C. Infrastructure and international development policies for data management research[J].Biblios-revista de bibliotecologia y ciencias de la informacion,2016,63:44-55.
[10] 中国科协创新战略研究院.欧洲实施科研数据管理政策:"科学欧洲"成员机构经验做法[R].北京:创新研究报告,2020.
[11] 王丹丹,董金金,杨嘉敏.《科研数据管理国际联盟实用指南》研究及启示[J].数字图书馆论坛,2021(4):17-24.
[12] 宋佳,温亮明,李洋.科学数据共享FAIR原则:背景、内容及实践[J].情报资料工作,2021,42(1):57-68.
[13] 翟军,梁佳佳,吕梦雪,等.欧盟开放科学数据的FAIR原则及启示[J].图书与情报,2020(6):103-111.
[14] 邱春艳.开放科学愿景下欧盟推进FAIR原则的路径、经验及启示[J].情报理论与实践,2021,44(5):199-205.
[15] 孟祥保,张璇.OCLC《科研数据管理的现实》系列报告解读与启示[J].图书情报工作,2019,63(7):38-46.
[16] 尤霞光,盛小平.8个国际组织科学数据开放共享政策的比较与特征分析[J].情报理论与实践,2017,40(12):40-45.
[17] 盛小平,王毅.利益相关者在科学数据开放共享中的责任与作用——基于国际组织科学数据开放共享政策的分析[J].图书情报工作,2019,63(17):31-39.
[18] 唐义,张晓蒙,郑燃.国际科学数据共享政策法规体系:Linked Science制度基础[J].图书情报知识,2013(3):67-73.
[19] 邢文明.我国科研数据管理与共享政策保障研究[D].武汉:武汉大学,2014:1-198.
[20] Science Europe. Practical guide to the international alignment of research data management-extended edition[R].Brussels:Science Europe AISBL,2021:1-53.
[21] Research Data Alliance. The TRUST principles:an RDA community effort[EB/OL].[2022-01-14].https://www.rd-alliance.org/trust-principles-rda-community-effort.
[22] CODATA. The Beijing declaration on research data[EB/OL].[2022-01-14].http://www.codata.org/uploads/Beijing% 20Declaration-19-11-07-FINAL.pdf.
[23] Research Data Alliance. CARE principles for indigenous data governance[EB/OL].[2022-01-14].https://www.gida-global.org/care.
[24] European Research Council. Guidelines on implementation of open access to scientific publications and research data[EB/OL].[2022-01-14].https://ec.europa.eu/research/participants/data/ref/h2020/other/hi/oa-pilot/h2020-hi-erc-oa-guide_en.pdf.
[25] OCLC. The realities of research data management[EB/OL].[2022-01-14].https://www.oclc.org/research/publications/2017/oclcresearch-research-data-management.html.
[26] European Commission. Guidelines to the rules on open access to scientific publications and open access to research data in Horizon 2020[EB/OL].[2022-01-14].https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-pilot-guide_en.pdf.
[27] European Commission. Guidelines on FAIR data management in Horizon 2020[EB/OL].[2022-01-14].https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-pilot-guide_en.pdf.
[28] International Science Council. Open data in a big data world[EB/OL].[2022-01-14].https://council.science/publications/open-data-in-a-big-data-world/.
[29] World Data System. Data sharing principles[EB/OL].[2022-01-14].https://www.worlddatasystem.org/files/WDS_Data_Sharing_Principles_2015.pdf.
[30] 叶鹰.试论图书情报学的主干知识及有效方法:兼论双证法和模本法之效用[J].中国图书馆学报,2021,47(3):58-66.
[31] 金贞燕,阿童木.科研数据管理服务内容体系构建研究[J].情报理论与实践,2021,44(8):42-50.
[32] FREEMAN R E. Strategic management:a stakeholder approach[M].Marshfield:Pitman,1984:31-32.
[33] STEELEWORTHY M. Research data management and the canadian academic library:an organizational consideration of data management and data stewardship[J].The Canadian journal of library and information practice and research,2014,9(1):1-11.
[34] 秦顺.面向一流高校建设的图书馆科研数据管理服务研究——以整合DLC-SH为视角[J].图书情报工作,2021,65(4):28-39.
[35] ALAN H. From Bethesda to Beijing-open research data has arrived![EB/OL].[2022-01-14].https://figshare.com/blog/From_Bethesda_to_Beijing_-_Open_Research_Data_has_arrived_/536.
[36] CARROLL S R,HERCZOG E,HUDSON M,et al. Operationalizing the CARE and FAIR principles for indigenous data futures[J].Scientific data,2021,8(1):1-6.
[37] International Science Council. Science international to agree international accord on open data[EB/OL].[2022-01-14].https://council.science/current/news/science-international-to-agree-international-accord-on-open-data/.
[38] FORCE11. Joint declaration of data citation principles[EB/OL].[2022-01-14].https://www.force11.org/datacitationprinciples.
[39] 张玉娥,王永珍.欧盟科研数据管理与开放获取政策及其启示——以"欧盟地平线2020"计划为例[J].图书情报工作,2017,61(13):70-76.
[40] 张文萍,宋秀芬,魏银珍,等.基于FAIR标准的科学数据融合体系研究[J].中国图书馆学报,2020,46(6):41-54.
[41] WILKINSON M D,DUMONTIER M,AALBERSBERG I J J,et al. The FAIR guiding principles for scientific data management and stewardship[J].Scientific data,2016,3(1):1-9.
[42] FAIRsFAIR. CoreTrustSeal+FAIR DPC FAIR forever webinar[EB/OL].[2022-01-14].https://www.dpconline.org/docs/miscellaneous/events/2021-events/2428-2021-03-18-dpc-fair-forever-hlh-fairsfair-coretrustseal-v01-00/file.
[43] CoreTrustSeal. Core certified repositories[EB/OL].[2022-01-14].https://www.coretrustseal.org/why-certification/certified-repositories/.
[44] FAIRsFAIR. Recommendations on practice to support FAIR data principles[EB/OL].[2021-01-14].https://www.fairsfair.eu/recommendations-practice-support-fair-data-principles.
[45] FAIRsFAIR. FAIRsFAIR data object assessment metrics:request for comments[EB/OL].[2025-01-14].https://www.fairsfair.eu/fairsfair-data-object-assessment-metrics-request-comments.
[46] EMILIE H,JAN L. Horizon 2020 FAIR DMP evaluation rubric[EB/OL].[2022-01-14].https://bibliotheek.uhasselt.be/sites/default/files/uploads/RDM/H2020FAIRDMP_Rubric.pdf.
[47] FOSTER Plus. Open science[EB/OL].[2022-01-14].https://www.fosteropenscience.eu/foster#taxonomy.
[48] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.信息技术科学数据引用[EB/OL].[2022-01-14].http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=A495CA355BAF00D962AA8DD84C3B2C16.
[49] MICHENER W K. Ten simple rules for creating a good data management plan[J].PLoS computational biology,2015,11(10):1-9.
[50] HART E M,BARMBY P,LEBAUER D,et al. Ten simple rules for digital data storage[J].PLoS computational biology,2016,12(10):e1005097.
[51] FAIRshake. JSON-LD enabled automated assessments[EB/OL].[2022-01-03].https://fairshake.cloud/documentation/jsonschema/.
[52] 叶兰.FAIR数据评估模型与工具研究[J].图书情报工作,2021,65(16):138-147.
[53] European Commission. Facts and figures for open research data[EB/OL].[2022-01-03].https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future/open-science/open-science-monitor/facts-and-figures-open-research-data_en#what-is-open-research-data.
[54] 李云婷,温亮明,张丽丽,等.科学数据共享系统的现状与趋势[J].农业大数据学报,2019,1(4):86-97.
Outlines

/