[1] 陈仕吉.科学研究前沿探测方法综述[J].现代图书情报技术, 2009(9):28-33.
[2] 黄晓斌,吴高.学科领域研究前沿探测方法研究述评[J].情报学报, 2019, 38(8):872-880.
[3] SMALL H. Co-citation in the scientific literature:a new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973, 24(4):265-269.
[4] MORRIS S A, YEN G, WU Z, et al. Time line visualization of research fronts[J]. Journal of the American Society for Information Science and Technology, 2003, 54(5):413-422.
[5] GARFIELD E. Historiographic mapping of knowledge domains literature[J]. Journal of information science, 2004, 30(2):119-145.
[6] HUMMON N P, DOREIAN P. Connectivity in a citation network:the development of DNA theory[J]. Social networks, 1989, 11(1):39-63.
[7] 谌志群,张国煊.文本挖掘研究进展[J].模式识别与人工智能, 2005, 18(1):65-74.
[8] 何伟林,谢红玲,奉国和.潜在狄利克雷分布模型研究综述[J].信息资源管理学报, 2018, 8(1):55-64.
[9] SMALL H G, GRIFFITH B C. The structure of scientific literatures I:Identifying and graphing specialties[J]. Science studies, 1974, 4(1):17-40.
[10] SMALL H G. Co-Citation model of a scientific specialty-longitudinal-study of collagen research[J]. Social studies of science, 1977, 7(2):139-166.
[11] 王春秀,冉美丽.学科主题演化定量分析的理论基础探析[J].现代情报,2008(6):48-50.
[12] 王金龙,徐从富,耿雪玉.基于概率图模型的科研文献主题演化研究[J].情报学报, 2009(3):347-355.
[13] 朱东华,万冬,汪雪锋,等.科学基金资助主题的演化路径分析与预测——以科技管理与政策学科为例[J].北京理工大学学报(社会科学版), 2018, 20(2):51-57.
[14] 沈思,李沁宇,叶媛,等.基于TWE模型的医学科技报告主题挖掘及演化分析研究[J].数据分析与知识发现, 2021, 5(3):35-44.
[15] TU Y N, SENG J L. Research intelligence involving information retrieval-an example of conferences and journals[J]. Expert systems with applications, 2009, 36(10):12151-12166.
[16] QI Y S, ZHU N, ZHAI Y J, et al. The mutually beneficial relationship of patents and scientific literature:topic evolution in nanoscience[J]. Scientometrics, 2018, 115(2):893-911.
[17] HU B B, DONG X L, ZHANG C W, et al. A lead-lag analysis of the topic evolution patterns for preprints and publications[J]. Journal of the Association for Information Science and Technology, 2015, 66(12):2643-2656.
[18] 张子振,储煜桂,吴小兰.基于LDA的多源文献主题及其差异研究——以"机器学习"为例[J].情报科学, 2019, 37(6):108-112,150.
[19] 徐路路,王芳.基于支持向量机和改进粒子群算法的科学前沿预测模型研究[J].情报科学, 2019, 37(8):22-28.
[20] 祝清松,冷伏海.基于引文内容分析的高被引论文主题识别研究[J].中国图书馆学报, 2014, 40(1):39-49.
[21] ABU-JBARA A, RADEV D. Reference scope identification in citing sentences[C]//Association for computational linguistics. Proceedings of the 2012 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies. Montréal:NAACL, 2012:80-90.
[22] JEBARI C, HERRERA-VIEDMA E, COBO M J. The use of citation context to detect the evolution of research topics:a large-scale analysis[J]. Scientometrics, 2021, 126(4):2971-2989.
[23] SMALL H, TSENG H, PATEK M. Discovering discoveries:identifying biomedical discoveries using citation contexts[J]. Journal of informetrics, 2017, 11(1):46-62.
[24] 毕崇武,叶光辉,彭泽,等.引文内容视角下的引文网络知识流动效应研究[J].情报科学, 2022, 40(2):49-58.
[25] 张艺蔓,马秀峰,程结晶.融合引文内容和全文本引文分析的知识流动研究[J].情报杂志, 2015, 34(11):50-54,49.
[26] 陈路遥.数字人文领域的知识网络研究[D].上海:华东师范大学, 2018.
[27] 章成志,徐庶睿,卢超.利用引文内容监测多学科交叉现象的方法与实证[J].图书情报工作, 2016, 60(19):108-115.
[28] 徐庶睿,卢超,章成志.术语引用视角下的学科交叉测度——以PLOS ONE上六个学科为例[J].情报学报, 2017, 36(8):809-820.
[29] 廖君华,陈军营,白如江.基于引文内容的多维度科技创新路径构建与可视化研究[J].山东理工大学学报(社会科学版), 2019, 35(4):80-90.
[30] RAMAGE D, HALL D, NALLAPATI R, et al. Labeled LDA:a supervised topic model for credit attribution in multi-labeled corpora[C]//Association for Computational Linguistics. Proceedings of the 2009 conference on empirical methods in natural language processing. Singapore:ACL, 2009:248-256.
[31] BLEI D M, GRIFFITHS T L, JORDAN M I, et al. Hierarchical topic models and the nested Chinese restaurant process[C]//Neural Information Processing Systems Foundation. Advances in neural information processing systems. Vancouver:NIPS, 2004:106-114.
[32] TEH Y W, JORDAN M I, BEAL M J, et al. Hierarchical Dirichlet Processes[J]. Journal of the American Statistical Association, 2006, 101(476):1566-1581.
[33] BASILI R, GIANNONE C, CROCE D, et al. Latent topic models of surface syntactic information[C]//Italian Association for Artificial Intelligence. Proceedings of the artificial intelligence around man and beyond. Palermo:IAAI, 2011:225-237.
[34] 齐亚双,祝娜,翟羽佳.基于DTM的国内外情报学研究主题热度演化对比研究[J].图书情报工作, 2016, 60(16):99-109.
[35] 罗艺.面向科技文献的主题发现及演化预测方法研究与应用[D].成都:电子科技大学, 2021.
[36] WANG X R, MCCALLUM A. Topics over time:a non-Markov continuous-time model of topical trends[C]//Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2006:424-433.
[37] 马秀敏.中国典型管理期刊文献主题发现与演化分析[D].大连:大连理工大学, 2011.
[38] 曾利.三维科研态势演化图谱及软件系统实现[D].长沙:国防科学技术大学, 2015.
[39] DING W Y, CHEN C M. Dynamic topic detection and tracking:a comparison of HDP, C-Word, and Co-Citation methods[J]. Journal of the Association for Information Science and Technology, 2014, 65(10):2084-2097.
[40] NAVEED N, SIZOV S, STAAB S. ATT:analyzing temporal dynamics of topics and authors in social media[C]//Proceedings of the 3rd international Web science conference. New York:ACM, 2011.
[41] 史庆伟,乔晓东,徐硕,等.作者主题演化模型及其在研究兴趣演化分析中的应用[J].情报学报, 2013, 32(9):912-919.
[42] 吴夙慧,成颖,郑彦宁,等.文本聚类中文本表示和相似度计算研究综述[J].情报科学, 2012, 30(4):622-627.
[43] PARLINA A, RAMLI K, MURFI H. Theme mapping and bibliometrics analysis of one decade of big data research in the Scopus database[J]. Information, 2020, 11(2):1-26.
[44] 赵龙,罗勇,孟浩.基于K-means-Laplacian的技术演化分析方法研究[J].情报杂志, 2015, 34(9):192-196.
[45] 邬启为.基于向量空间的文本聚类方法与实现[D].北京:北京交通大学, 2014.
[46] 唐明,朱磊,邹显春.基于Word2Vec的一种文档向量表示[J].计算机科学, 2016, 43(6):214-217,269.
[47] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th international conference on neural information processing systems. New York:Curran Associates, 2013:3111-3119.
[48] LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]//Proceedings of the 31st international conference on international conference on machine learning. Beijing:JMLR, 2014:1188-1196.
[49] 巴志超,杨子江,朱世伟,等.基于关键词语义网络的领域主题演化分析方法研究[J].情报理论与实践, 2016, 39(3):67-72.
[50] VAHIDNIA S, ABBASI A, ABBASS H A. Embedding-based detection and extraction of research topics from academic documents using deep clustering[J]. Journal of data and information science, 2021, 6(3):99-122.
[51] 贾晓婷,王名扬,曹宇.结合Doc2Vec与改进聚类算法的中文单文档自动摘要方法研究[J].数据分析与知识发现, 2018, 2(2):86-95.
[52] 霍朝光,霍帆帆,董克.基于LSTM神经网络的学科主题热度预测模型[J].图书情报知识, 2021(2):25-34.
[53] XU S, HAO L Y, AN X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of informetrics, 2019, 13(4):1-19.
[54] LIANG Z T, MAO J, LU K, et al. Combining deep neural network and bibliometric indicator for emerging research topic prediction[J]. Information processing&management, 2021, 58(5):1-18.
[55] QIAN Y X, NI Z N, GUI W X, et al. Exploring the landscape, hot topics, and trends of electronic health records literature with topics detection and evolution analysis[J]. International journal of computational intelligence systems, 2021, 14(1):744-757.
[56] TRAPPEY A J C, CHEN P P J, TRAPPEY C V, et al. A machine learning approach for solar power technology review and patent evolution analysis[J]. Applied sciences, 2019, 9(7):1-25.
[57] BENGIO Y, DELALLEAU O. On the expressive power of deep architectures[C]//Proceedings of the 22nd international conference on algorithmic learning theory. Espoo:ALT, 2011:18-36.
[58] 隗玲,许海云,胡正银,等.学科主题演化路径的多模式识别与预测——一个情报学学科主题演化案例[J].图书情报工作, 2016, 60(13):71-81.
[59] 单斌,李芳.基于LDA话题演化研究方法综述[J].中文信息学报, 2010, 24(6):43-49,68.
[60] GRIFFITHS T L, STEYVERS M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(S1):5228-5235.
[61] BLEI D M, LAFFERTY J D. Dynamic Topic Models[C]//Association for Computing Machinery. Proceedings of the 23rd international conference on machine learning. Pittsburgh:ACM, 2006:113-120.
[62] WEI X, SUN J M, WANG X R. Dynamic Mixture Models for multiple time series[C]//Proceedings of the 20th international joint conference on artificial intelligence. Hyderabad:Morgan Kaufmann Publislers, 2007:2909-2914.
[63] WANG C, BLEI D, HECKERMAN D. Continuous time Dynamic Topic Models[C/OL]//Proceedings of the twenty-fourth conference on uncertainty in artificial intelligence.[2022-05-30]. http://doi.org/10.48550/arxiv.1208.5154.
[64] ALSUMAIT L, BARBARÁD, DOMENICONI C. On-line LDA:adaptive topic models for mining text streams with applications to topic detection and tracking[C]//IEEE Computer Society. Proceedings of the 2008 eighth IEEE international conference on data mining. Washington D.C.:IEEE, 2008:3-12.
[65] HALL D, JURAFSKY D, MANNING C D. Studying the history of ideas using topic models[C]//Association for Computational Linguistics. Proceedings of the conference on empirical methods in natural language processing. Hawaii:ACL, 2008:363-371.
[66] MOHAMMADI E, KARAMI A. Exploring research trends in big data across disciplines:a text mining analysis[J]. Journal of information science, 2022, 48(1):44-56.
[67] 贺亮.基于话题模型的科技文献话题发现与趋势分析[D].上海:上海交通大学, 2012.
[68] 刘自强,王效岳,白如江.多维主题演化分析模型构建与实证研究[J].情报理论与实践, 2017, 40(3):92-98.
[69] WU H, YI H F, LI C. An integrated approach for detecting and quantifying the topic evolutions of patent technology:a case study on graphene field[J]. Scientometrics, 2021, 126(8):6301-6321.
[70] 王文娟,马建霞.基于LDA的科研项目主题挖掘与演化分析——以NSF海洋酸化研究为例[J].情报杂志, 2017, 36(7):34-39.
[71] 霍朝光,董克,司湘云.国内外LIS学科主题热度演化分析与预测[J].图书情报知识, 2021(2):35-47,57.
[72] 秦晓慧,乐小虬.基于LDA主题关联过滤的领域主题演化研究[J].现代图书情报技术, 2015(3):18-25.
[73] 徐红姣,曾文,张运良.基于Word2vec的论文和专利主题关联演化分析方法研究[J].情报杂志, 2018, 37(12):36-42.
[74] 刘自强,王效岳,白如江.语义分类的学科主题演化分析方法研究——以我国图书情报领域大数据研究为例[J].图书情报工作, 2016, 60(15):76-85,93.
[75] 吕伟民.基于DTM的科学基金主题演化分析[D].北京:中国科学院大学, 2017.
[76] CHEN B T, TSUTSUI S, DING Y, et al. Understanding the topic evolution in a scientific domain:an exploratory study for the field of information retrieval[J]. Journal of informetrics, 2017, 11(4):1175-1189.
[77] DE BATTISTI F, FERRARA A, SALINI S. A decade of research in statistics:a topic model approach[J]. Scientometrics, 2015, 103(2):413-433.
[78] 关鹏,王曰芬,傅柱.基于LDA的主题语义演化分析方法研究——以锂离子电池领域为例[J].数据分析与知识发现, 2019, 3(7):61-72.
[79] 曲佳彬,欧石燕.基于主题过滤与主题关联的学科主题演化分析[J].数据分析与知识发现, 2018, 2(1):64-75.
[80] 丁玉飞,王曰芬,刘卫江.基于主题模型的科技监测方法及应用研究[J].情报学报, 2015, 34(8):854-865.
[81] 范少萍,安新颖,单连慧,等.基于医学文献的主题演化类型与演化路径识别方法研究[J].情报理论与实践, 2019, 42(3):114-119.
[82] 颜端武,苏琼,张馨月.基于时序主题关联演化的科学领域前沿探测研究[J].情报理论与实践, 2019, 42(7):144-150.
[83] WANG X F, ZHANG S, LIU Y Q, et al. How pharmaceutical innovation evolves:the path from science to technological development to marketable drugs[J]. Technological forecasting and social change, 2021, 167(1):120698.
[84] WANG X F, ZHANG S, LIU Y Q. ITGInsight-discovering and visualizing research fronts in the scientific literature[J/OL]. Scientometrics, 2021.[2022-04-30].http://doi.org/10.1007/s11192-021-04190-9.作者贡献说明:梁爽:文献调研与资料收集,论文撰写;刘小平:确定选题,设计论文框架,写作指导与修订。