[Purpose/Significance] Under the background of the US technology against China and talent blockade policy, the virtual scientific research team finds that from the perspective of intelligence research, it provides references and key data support for identifying potential cooperation objects, discovering scientific research teams with substantial potential, and forming a team and optimizing the structure, which has important theoretical and practical application value. [Method/Process] This study selected NIH-funded research papers, conference papers and reviews in the field of critical care medicine from the Scopus database from 2012 to 2021, introduced and improved the modularity-based Louvain algorithm in community identification research, and based on the closeness characteristics of author cooperation in the scientific research output co-authorship network of scientific researchers in a specific cross-scientific field, this paper initially identified of virtual scientific research teams; Then, combined with vector space model, simulated annealing algorithm and parallel computing, respectively, it further optimized the iterative process of author partnership characterization and refinement algorithm, through optimization matrix calculation and matrix input, it improved the effect and efficiency of virtual scientific research team identification; Finally, the identification results of GN algorithm and spectral clustering algorithm were compared to verify the effectiveness of the improved Louvain algorithm to identify virtual scientific research teams. [Result/Conclusion] In the calculation of large-scale author-author relationship matrix, it is ideal to use the improved Louvain algorithm to identify virtual scientific research teams in specific fields, it is manifested in the following three aspects. First, the contribution of authors to papers in information science research is fully considered, to improve the identification effect of the scientific research team. Second, by optimizing the matrix input, refining the local modularity calculation and increasing the parallel calculation, the operation time is effectively reduced, and the recognition efficiency is improved. Third, the identification results of the virtual scientific research team provide a reference for the discovery of potential partners.
Lü Qianqian
,
Tan Zongying
. Research on the Identification Method of Virtual Scientific Research Team——Taking the Field of Critical Care Medicine as an Example[J]. Library and Information Service, 2022
, 66(15)
: 97
-106
.
DOI: 10.13266/j.issn.0252-3116.2022.15.010
[1] FINANCESONLINE. 12 Virtual team trends for 2021/2022: top forecasts to watch out for [EB/OL].[2022-03-02]. https://financesonline.com/virtual-team-trends/.
[2] UPWORK. Third annual "Future Workforce Report" sheds light on how younger generations are reshaping the future of work [EB/OL].[2022-03-10]. https://www.upwork.com/press/releases/third-annual-future-workforce-report.
[3] 渠慎宁, 杨丹辉. 逆全球化下中美经济脱钩风险的领域与应对策略[J]. 财经问题研究. 2021(7):102-109.
[4] LI J Y, WAN X X, WANG X. Effects of social capital and knowledge integration on innovation performance: an example of virtual teams[J]. Revista de cercetare si interventie sociala, 2020, 69: 227-240.
[5] STOKOLS D, HALL K L, TAYLOR B K, et al. The science of team science: overview of the field and introduction to the supplement[J]. American journal of preventive medicine, 2008, 35(2S): 77-89.
[6] NATIONAL RESEARCH COUNCIL. Enhancing the effectiveness of team science [EB/OL].[2022-03-20]. http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science.
[7] JESUS R, BELEN G, JOSE M. Scientists' performance and consolidation of research teams in biology and biomedicine at the spanish council for scientific research[J]. Scientometrics, 2006, 69(2): 183-212.
[8] BORDONS M, ZULUETA M A, CABRERO A, et al. Identifying research teams with bibliometric tools[EB/OL].[2022-01-12].https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3145915.
[9] 邱均平, 伍超. 基于社会网络分析的国内计量学作者合作关系研究 [J]. 图书情报知识, 2011(6): 12-17.
[10] CALERO C, BUTER R, VALDES C, et al. How to identify research groups using publication analysis: an example in the field of nanotechnology[J]. Scientometrics, 2006, 66(2): 365-376.
[11] 吕璐成, 赵亚娟, 王学昭, 等. 基于关联规则挖掘的研发团队识别方法 [J]. 科技管理研究, 2016, 36(17): 148-152.
[12] 余厚强, 白宽, 邹本涛, 等. 人工智能领域科研团队识别与领军团队提取 [J]. 图书情报工作, 2020, 64(20): 4-13.
[13] VINCENT B, JEANLOUP G, RENAUD L, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008, 2008(10): 1-12.
[14] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical review e statistical nonlinear & soft matter physics, 2004, 69(2): 026113.
[15] SATTARI M, ZAMANIFAR K. A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks[J]. Journal of computational science, 2018, 25: 122-133.
[16] WANG M, ZOU Y, CAO Y, et al. Searching software knowledge graph with question[EB/OL].[2022-01-12].https://linkspringer.53yu.com/chapter/10.1007/978-3-030-22888-0_9.
[17] 杜伟静, 李翀, 王宇宸, 等. Web of Science科研社区挖掘算法研究 [J]. 小型微型计算机系统, 2020, 41(12): 2465-2469.
[18] NEWMAN M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences, 2006, 103(23): 8577-8582.
[19] 方勇, 杨京宁, 颜佳佳, 等. 自然指数和基本科学指标在基础研究领域影响力的差异化分析 [J]. 科技管理研究, 2017, 37(7): 56-60.
[20] 杨倩倩, 刘宪, 马德章. 自然指数对高校科研能力评估的意义与思考——以南方科技大学为例 [J]. 科研管理, 2020, 41(7): 258-261.
[21] 杨颖, 许丹, 陈斯斯, 等. 基于自然指数刊文数据对全球医学研究领域热点的探析 [J]. 情报学报, 2019, 38(11).1129-1137.
[22] NATURE. Nature Index 2014 [EB/OL].[2021-12-17]. https://www.natureindex.com/faq.
[23] NATURE. Nature Index tables [J]. Nature, 2015, 522(7556S): 34-44.
[24] 沈耕宇,黄水清,王东波.以作者合作共现为源数据的科研团队发掘方法研究[J].现代图书情报技术,2013(1):57-62.
[25] 孙登第. 基于随机点积图理论的模式识别方法研究[D]合肥:安徽大学, 2012.
[26] 李宝强, 李翠萍, 张琳, 等. 基于分段加权的点积相似度方法研究 [J]. 计算机与应用化学, 2014, 31(1): 24-28.
[27] 何嘉林. 复杂网络中的社团结构探测和应用研究 [D]. 成都:电子科技大学, 2017.
[28] 王丰雪, 陈家琪. 一种结合模拟退火和贪心策略的社团识别算法 [J]. 电子科技, 2016, 29(2): 8-11.
[29] METROPOLIS N, ROSENBLUTH A, ROSENBLUTH M, et al. Equation of state by fast computing machines[J]. Journal of chemical physics, 1953, 21(6):1087-1092.
[30] KIRPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598):671-680.
[31] 中华医学会重症医学分会. 中国重症医学科研平台章程[EB/OL].[2022-03-02]. http://www.csccm.org/cn/page.asp?pageid=119.html.
[32] LIAO X, WANG B, KANG Y. Novel coronavirus infection during the 2019-2020 epidemic: preparing intensive care units-the experience in Sichuan Province, China[J]. Intensive care medicine, 2020, 46(2): 357-360.
[33] 李纲, 柳明飞, 吴青, 等. 基于蝴蝶结模型的科研团队角色识别及其特征研究 [J]. 图书情报工作, 2017, 61(5): 87-94.