INFORMATION RESEARCH

Research on the Interdisciplinary Measurement of Research Topics from the Perspective of Complex Networks

  • Huang Han ,
  • Wang Xiaoguang ,
  • Wang Yimeng
Expand
  • 1 School of Information Management, Wuhan University, Wuhan 430072;
    2 Center for Studies of Information Resources, Wuhan University, Wuhan 430072

Received date: 2022-04-22

  Revised date: 2022-07-11

  Online published: 2022-10-25

Abstract

[Purpose/Significance] Interdisciplinary topics are the product of multidisciplinary knowledge collision and fusion. The identification and measurement of interdisciplinary topics are of great significance for understanding the process of subject knowledge transfer and discovering new discipline growth points.[Method/Process] From the perspective of complex network, this paper comprehensively investigated the discipline diversity and discipline coherence of research topics, and proposed a new interdisciplinary measure index, TIc, based on the citation relationship and discipline citation network structure of research topic. And an empirical experiment was conducted to verify the effectiveness of TIc based on the data of papers published in SSCI source journals of library and information science in the past 20 years.[Result/Conclusion] The results show that TIc index can reveal the overall interdisciplinary situation of the discipline through the interdisciplinary attributes of the research topics in the discipline, and also reveal the degree of multidisciplinary knowledge fusion of micro topics through the two dimensions of diversity and coherence, which is an effective supplement to the existing interdisciplinary measure index system. In addition, TIc index can identify the research topics with the most interdisciplinary development potential, which also has certain guiding significance for relevant researchers and practitioners to make scientific research decisions.

Cite this article

Huang Han , Wang Xiaoguang , Wang Yimeng . Research on the Interdisciplinary Measurement of Research Topics from the Perspective of Complex Networks[J]. Library and Information Service, 2022 , 66(19) : 99 -109 . DOI: 10.13266/j.issn.0252-3116.2022.19.010

References

[1] 张雪,张志强.学科交叉研究系统综述[J].图书情报工作,2020,64(14):112-125.
[2] 路甬祥.学科交叉与交叉科学的意义[J].中国科学院院刊,2005(1):58-60.
[3] 张琳,孙蓓蓓,黄颖.交叉科学研究:内涵、测度与影响[J].科研管理,2020,41(7):279-288.
[4] 陈仕吉,崔腾腾,邱均平.学科交叉动力学分析研究综述[J/OL].数据分析与知识发现:1-11[2022-04-20].http://kns.cnki.net/kcms/detail/10.1478.G2.20220126.1035.002.html.
[5] 马瑞敏,闫晓慧,申楠.学科交叉直接测度研究[J].情报学报,2019,38(7):688-696.
[6] HUANG Y, LU W, LIU J, et al. Towards transdisciplinary impact of scientific publications:a longitudinal, comprehensive, and large-scale analysis on Microsoft Academic Graph[J]. Information processing and management, 2022, 59(2):102859.
[7] 张琳,孙蓓蓓,王贤文,等.交叉科学成果影响力研究:使用数据与引用数据视角[J].情报学报,2020,39(5):469-477.
[8] DONG K, XU H, LUO R, et al. An integrated method for interdisciplinary topic identification and prediction:a case study on information science and library science[J]. Scientometrics, 2018, 115(2):849-868.
[9] 张斌.交叉学科主题探究:从主题聚类视角[J].情报科学,2020,38(10):49-55.
[10] 徐庶睿,章成志,卢超.利用引文内容进行主题级学科交叉类型分析[J].图书情报工作,2017,61(23):15-24.
[11] 周建林,牛琪锴,曾安,等.基于复杂网络视角的科学文献数据分析[J].科技导报,2018,36(8):55-64.
[12] 吕鹏辉,张士靖.学科知识网络研究(I)引文网络的结构、特征与演化[J].情报学报,2014,33(4):340-348.
[13] WANG X, WANG H, HUANG H. Evolutionary exploration and comparative analysis of the research topic networks in information disciplines[J]. Scientometrics, 2021,126(6):4991-5017.
[14] 刘仲林.交叉科学时代的交叉研究[J].科学学研究,1993(2):11-18.
[15] 侯剑华,陈皞钰.国内理论科学学研究述评(2012-2017)[J].科技管理研究,2019,39(5):237-245.
[16] PORTER A L, COHEN A S, ROESSNER D J, et al. Measuring researcher interdisciplinarity[J]. Scientometrics,2007,72(1):117-147.
[17] PORTER A L, CHUBIN D E. An indicator of cross-disciplinary research[J]. Scientometrics,1985,8(3):161-176.
[18] HAMERS L, HEMERYCK Y, HERWEYERS G, et al. Similarity measures in scientometric research:the Jaccard index versus Salton's cosine formula[J]. Information processing and management:an international journal, 1989,25(3):315-318.
[19] ZHOU Q, ROUSSEAU R, YANG L, et al. A general framework for describing diversity within systems and similarity between systems with applications in informetrics[J]. Scientometrics, 2012, 93(3):787-812.
[20] LEYDESDORFF L, RAFOLS I. Indicators of the interdisciplinarity of journals:diversity, centrality, and citations[J]. Journal of informetrics, 2011, 5(1):87-100.
[21] CHANG Y, HUANG M. A study of the evolution of interdisciplinarity in library and information science:using three bibliometric methods[J]. Journal of the American society for information science & technology, 2012,63(1):22-33.
[22] GRANT R M, JAMMINE A P, THOMAS H. Diversity, diversification, and profitability among British manufacturing companies, 1972-1984[J]. The academy of management journal, 1988, 31(4):771-801.
[23] STIRLING A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface,2007,4(15):707-719.
[24] 施顺顺. 基于Rao-Stirling多样性算法的公共管理学跨学科性评估研究[D].杭州:浙江财经大学,2019.
[25] 韩正琪,刘小平,寇晶晶.基于Rao-Stirling指数和LDA模型的领域学科交叉主题识别——以纳米科技为例[J].情报科学,2020,38(2):116-124.
[26] 韩正琪,刘小平,徐涵.基于Rao-Stirling指数的学科交叉文献发现——以纳米科学与纳米技术为例[J].图书情报工作,2018,62(1):125-131.
[27] LEYDESDORFF L, WAGNER C S, BORNMANN L. Interdisciplinarity as diversity in citation patterns among journals:Rao-Stirling diversity, relative variety, and the Gini coefficient[J]. Journal of informetrics, 2019, 13(1):255-269.
[28] BROMHAM L, DINNAGE R, HUA X. Interdisciplinary research has consistently lower funding success[J]. Nature, 2016, 534(7609):684-687.
[29] LEINSTER T, COBBOLD C A. Measuring diversity:the importance of species similarity[J]. Ecology, 2012, 93(3):477-489.
[30] ZHANG L, ROUSSEAU R, GLANZEL W. Diversity of references as an indicator of the interdisciplinarity of journals:taking similarity between subject fields into account[J]. Journal of the Association for Information Science and Technology, 2016, 67(5):1257-1265.
[31] LEYDESDORFF, L. Diversity and interdisciplinarity:how can one distinguish and recombine disparity, variety, and balance?[J]. Scientometrics, 2018,116(3):2113-2121.
[32] LEYDESDORFF L. Betweenness centrality as an indicator of the interdisciplinarity of scientific journals[J]. Journal of the American Society for Information Science and Technology, 2007, 58(9):1303-1319.
[33] HU J, ZHANG Y. Measuring the interdisciplinarity of big data research:a longitudinal study[J]. Online information review, 2018, 42(5):681-696.
[34] SILVA F N, RODRIGUES F A, OLIVEIRA O N, et al. Quantifying the interdisciplinarity of scientific journals and fields[J]. Journal of informetrics, 2013, 7(2):469-477.
[35] 李长玲,纪雪梅,支岭.基于E-I指数的学科交叉程度分析——以情报学等5个学科为例[J].图书情报工作,2011,55(16):33-36.
[36] RAFOLS I, MEYER M. Diversity and network coherence as indicators of interdisciplinarity:case studies in bionanoscience[J]. Scientometrics, 2009, 82(2):263-287.
[37] RAFOLS I. Knowledge integration and diffusion:measures and mapping of diversity and coherence[M]//DING Y,ROUSSEAU R,WOLFRAM D. Measuring scholarly impact:methods and practice. Cham:Springer, 2014:169-190.
[38] 陈赛君,陈智高.学科领域交叉性及对其测度的Φ指标——以我国科学学研究领域为例[J].科学学与科学技术管理,2014,35(5):3-12.
[39] 许海云,董坤,刘昊,等.基于异构网络的学科交叉主题发现方法[J].情报科学,2017,35(6):130-137,153.
[40] 阮光册,夏磊.学科间交叉研究主题识别——以图书情报学与教育学为例[J].情报科学,2020,38(12):152-157.
[41] 李长玲,郭凤娇,支岭.基于SNA的学科交叉研究主题分析——以情报学与计算机科学为例[J].情报科学,2014,32(12):61-66.
[42] 王连喜,曹树金.学科交叉视角下的网络舆情研究主题比较分析——以国内图书情报学和新闻传播学为例[J].情报学报,2017,36(2):159-169.
[43] 徐庶睿,卢超,章成志.学科交叉度的点面关系研究[J].图书馆论坛,2017,37(10):64-70.
[44] 许海云,郭婷,岳增慧,等.基于TI指标系列的情报学学科交叉主题研究[J].情报学报,2015,34(10):1067-1078.
[45] 许海云,刘春江,雷炳旭,等.学科交叉的测度、可视化研究及应用——一个情报学文献计量研究案例[J].图书情报工作,2014,58(12):95-101.
[46] 张琳,刘冬东,吕琦,等.论文学科交叉测度研究:从全部引文到章节引文[J].情报学报,2020,39(5):492-499.
[47] 王晓光,程齐凯.基于NEViewer的学科主题演化可视化分析[J].情报学报,2013,32(9):900-911.
[48] GUIMERÀ R, SALES-PARDO M, AMARAL L. Classes of complex networks defined by role-to-role connectivity profiles[J]. Nature physics,2007,3(1):63-69.
[49] 朱梦娴,程齐凯,陆伟.基于社会网络的学科主题聚类研究[J].情报杂志,2012,31(11):40-44,39.
[50] SHANNON C E. A mathematical theory of communication[J].ACM sigmobile mobile computing and communications review,2001,5(1):3-55.
[51] 李亚婷.图书情报学的学科交叉研究进展[J].情报科学,2017,35(11):156-160,171.
[52] 范少萍,安新颖,晏归来,等.医学领域前沿主题识别方法研究[J].情报学报,2018,37(7):686-694.
Outlines

/