[Purpose/Significance] In the background of the rapid development of blockchain finance, identifying the key technologies of blockchain finance industry will help relevant departments formulate more accurate risk prevention measures and technical supervision policies, so as to enhance the legitimacy and controllability of blockchain application and ensure financial stability.[Method/Process] By collecting the patent data of blockchain finance, this paper used the combined word segmentation method and LDA model to identify key technical topics, and formulated key technologies. Then it determined the key technologies of blockchain finance according to the key technical characteristics of the industry, and explored the role of the identification results in promoting the development of the blockchain finance industry.[Result/Conclusion] The research finds that the three key technologies of the blockchain finance industry are point-to-point distributed technology, consensus mechanism, hash algorithm and encryption technology, and consensus mechanism. Based on the above identification results, this paper puts forward suggestions on the technical improvement and supervision of blockchain finance.
Lü Kun
,
Chen Xiaoyu
,
Jing Jipeng
. Research on Identification of Key Technologies in Blockchain Financial Industry Based on Combined Word Segmentation Method and LDA Model[J]. Library and Information Service, 2022
, 66(19)
: 110
-121
.
DOI: 10.13266/j.issn.0252-3116.2022.19.011
[1] 斯万.区块链:新经济蓝图及导读[M]. 韩锋,龚鸣,陶荣祺,等译.北京:新星出版社,2016:16-20.
[2] 张泽群,王伟.数字驱动?信息再造与区块链金融演化——以区块链期货信息再造为例[J]. 情报科学,2021,39(9):139-145.
[3] MACDONALD T J, ALLEN D W E, POTTS J, Blockchains and the boundaries of self-organized economies:predictions for the future of banking[M]. Berlin:Springer international publishing,2016:279-296.
[4] HE S. Impact of blockchain applications on trust in business[J]. iBusiness,2020,12(3):103-112.
[5] 赵大伟.区块链能拯救P2P网络借贷吗?[J].金融理论与实践,2016(9):41-44.
[6] 袁勇,王飞跃.区块链技术发展现状与展望[J].自动化学报,2016,42(4):481-494.
[7] MTHETHWA S. The analysis of the blockchain technology and challenges hampering its adoption[J].World academy of science,2016,10(12):1937-1948.
[8] TAPSCOTT D, TAPSCOTT A. How blockchain will change organizations[J]. MIT Sloan management review,2017,58(2):10-13.
[9] 奉国和,郑伟.国内中文自动分词技术研究综述[J].图书情报工作,2011,55(2):41-45.
[10] 姚兴山.基于Hash算法的中文分词研究[J].现代图书情报技术,2008(3):78-81.
[11] 尹锋.基于神经网络的汉语自动分词系统的设计与分析[J].情报学报,1998,17(1):41-50.
[12] 孙茂松,肖明,邹嘉彦.基于无指导学习策略的无词表条件下的汉语自动分词[J]. 计算机学报,2004,27(6):736-742.
[13] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. The journal of machine learning research, 2003,3(1):993-1022.
[14] 马永红,孔令凯,林超然,等.基于专利挖掘的关键共性技术识别研究[J].情报学报,2020,39(10):1093-1103.
[15] 王秀红,高敏.基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J].图书情报工作,2021,65(22):114-125.
[16] 杨艳萍,董瑜,韩涛.基于专利共被引聚类和组合分析的产业关键技术识别方法研究——以作物育种技术为例[J].图书情报工作,2016,60(19):143-148,124.
[17] 李宏宽,何海燕,单捷飞,等. 特征分析视角下半导体制造产业关键技术分布研究[J]. 中国科技论坛,2019(6):80-94.
[18] 张栋,余翔,刘鑫.基于复合专利共现网络与专家机制的产业关键技术清单研究——以中国发展碳捕集技术为例[J].情报杂志,2019,38(11):34-42.
[19] 黎欢,彭爱东.专利引文三种关键技术挖掘方法比较分析——以全息摄影技术为例[J].图书情报工作,2013,57(20):98-103.
[20] 王健美,刘志芳,戴爱兵.纯电动汽车产业关键技术演进分析——专利引文分析视角[J]. 图书情报工作,2014,58(14):21-27.
[21] SHIN J, KIM C M. Risk-adjusted performance forecasting of future key technology[J]. Technology analysis & strategic management,2013,25(2):147-161.
[22] MANUEL S M, MEDO M, LAFOND F. Early identification of important patents:design and validation of citation network metrics[J]. Technological forecasting and social change, 2019, 146(9):644-654.
[23] ALTUNTAS S, DERELI T, KUSIAK A. Forecasting technology success based on patent data[J]. Technological forecasting and social change, 2015, 96(7):202-214.
[24] 罗燕,赵书良,李晓超,等.基于词频统计的文本关键词提取方法[J].计算机应用,2016,36(3):718-725.
[25] 周健,张杰,屈冉,等.基于LDA的国内外区块链主题挖掘与演化分析[J].情报杂志,2021,40(9):161-169.
[26] 赵蓉英,戴祎璠,王旭.基于LDA模型与ATM模型的学者影响力评价研究——以我国核物理学科为例[J].情报科学,2019,37(6):3-9.
[27] 李红.知识密集型服务业特征剖析[J].情报杂志,2005(8):101-103.
[28] 张亮亮,苏涛永,张健.中国物流产业技术效率:时空分异、影响因素与演进逻辑——基于PP-SFA模型的实证分析[J]. 商业经济与管理,2019(4):30-45.