Research on Communication Informatics and Its Progress

  • Chen Xiujuan ,
  • Zhang Zhiqiang
Expand
  • 1 School of Journalism and Communication, Nanjing Normal University, Nanjing 210097;
    2 Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610299;
    3 Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Science, Beijing 100049

Received date: 2022-06-15

  Revised date: 2022-08-31

  Online published: 2022-11-25

Abstract

[Purpose/Significance] This study is of great significance for developing the theory of communication informatics, improving the research methods and contents of communication informatics, and promoting knowledge discovery in the field of communication.[Method/Process] Communication informatics is a new field of analysis and research of information communication laws under the paradigm of communication big data. This paper comprehensively introduced, interpreted and studied communication informatics from four perspectives:theoretical construction, technical methods, research contents, key issues and suggestions for its development. First of all, starting from the background of communication informatics, it defined and analyzed the concept of communication informatics, and sorted out its development path. Secondly, the technical methods of communication informatics were discussed from the perspectives of data collection, data storage, data processing, data analysis and knowledge discovery. Thirdly, based on the "5W" framework of communication, the research content was discussed in terms of communicators, communication contents, communication channels, communication objects, and communication effects. Finally, the key issues and directions for the development of communication informatics were proposed.[Result/Conclusion] The development of communication informatics in the future should promote the cooperation and sharing of communication big data, optimize the technology and methods of communication big data analysis, strengthen the research on the dissemination of false information and public opinion control, build a normative mechanism for user privacy and ethics and focus on the cultivation of comprehensive research talents.

Cite this article

Chen Xiujuan , Zhang Zhiqiang . Research on Communication Informatics and Its Progress[J]. Library and Information Service, 2022 , 66(21) : 120 -131 . DOI: 10.13266/j.issn.0252-3116.2022.21.013

References

[1] HEY T, TANSLEY S, TOLLE K. The fourth paradigm:data-intensive scientific discovery[M]. Redmond:Microsoft Research, 2009.
[2] 张志强, 范少萍. 论学科信息学的兴起与发展[J]. 情报学报, 2015, 34(10):1011-1023.
[3] 张伦, 王成军, 许小可. 计算传播学导论[M]. 北京:北京师范大学出版社, 2018.
[4] 塔娜. "计算传播学"的发展路径:概念、数据及研究领域[J]. 新闻与写作, 2020(5):5-12.
[5] 王成军. 计算传播学的起源、概念和应用[J]. 编辑学刊, 2016(3):59-64.
[6] 祝建华, 彭泰权, 梁海, 等. 计算社会科学在新闻传播研究中的应用[J]. 科研信息化技术与应用, 2014, 5(2):3-13.
[7] SCHRAMM W. How communication works, the process and effects of mass communication[M]. Urbana:University of Illinois Press, 1954.
[8] AYER A J. What is communication? studies in communication[M]. London:Martin Secker and Warburg, 1995.
[9] 钟义信. 信息科学原理[M]. 3版.北京:北京邮电大学出版社, 2002.
[10] QuestMobile研究院. QuestMobile中国移动互联网发展启示录(一)[EB/OL].[2022-08-28]. https://www.questmobile.com.cn/research/report-new/216.
[11] 郭庆光. 传播学教程[M]. 北京:中国人民大学出版社, 2011.
[12] 梅琼林. 克劳德·香农的信息论方法及其对传播学的贡献[J]. 九江学院学报, 2007(6):1-5.
[13] 闫学杉. 人类信息学的基本问题[J]. 国外社会科学, 1997(6):32-38.
[14] 滨田纯一. "社会信息学"综述[J]. 国际新闻界, 1999(1):29-32.
[15] 吴信训. 从新闻学到社会信息学——从东京大学新闻研究所更名谈起[J]. 新闻界, 1993(5):31-32.
[16] 欧阳康. 社会信息科学的学科定位与研究思路[J]. 华中科技大学学报(社会科学版), 2007(1):72-77.
[17] 陈少华. 信息科学视野下的传播及传播学研究探析[J]. 南京邮电大学学报(社会科学版), 2008(3):44-47.
[18] University of Southern California. Master of communication informatics[EB/OL].[2022-08-28]. http://datascience.usc.edu/academics/programs/master-of-communication-informatics.htm.
[19] 王成军. 计算传播学:作为计算社会科学的传播学[J]. 中国网络传播研究, 2014(8):193-206.
[20] EAGLE N, PENTLAND A, LAZER D. Inferring friendship network structure by using mobile phone data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(36):15274-15278.
[21] LASSWELL H D. The structure and function of communication in society[M]. Urbana:University of Illinois Press, 1948.
[22] OGAN C, VAROL O. What is gained and what is left to be done when content analysis is added to network analysis in the study of a social movement:Twitter use during Gezi Park[J]. Information communication and society, 2017, 18(2):221-242.
[23] JACKSON S J, WELLES B F. #Ferguson is everywhere:initiators in emerging counterpublic networks[J]. Information communication and society, 2016, 19(3):397-418.
[24] 韩运荣, 漆雪. Twitter涉华舆情极化现象研究——以中美贸易争端为例[J]. 现代传播(中国传媒大学学报), 2019(3):144-150.
[25] WU S M, HOFMAN J M, MASON W A, et al. Who says what to whom on Twitter[C]//WWW'11:Proceedings of the 20th international conference on World Wide Web. New York:ACM, 2011:705-714.
[26] XU P P, WU Y C, WEI E X, et al. Visual analysis of topic competition on social media[J]. IEEE transactions on visualization and computer graphics, 2013, 19(12), 2012-2021.
[27] ABD-ALRAZAQ A, ALHUWAIL D, HOUSEH M, et al. Top concerns of tweeters during the COVID-19 pandemic:infoveillance study[J]. Journal of medical internet research, 2020, 22(4):e19016.
[28] 金苗, 自国天然, 纪娇娇. 意义探索与意图查核——"一带一路"倡议五年来西方主流媒体报道LDA主题模型分析[J]. 新闻大学, 2019(5):13-29,116-117.
[29] LAMBERT B, KONTONATSIOS G, MAUCH M, et al. The pace of modern culture[J]. Nature human behaviour, 2020, 4(4):1-9.
[30] 赵蓉英, 常茹茹, 陈湛, 等. 基于知乎平台的突发公共卫生事件主题演化研究[J]. 信息资源管理学报, 2021, 11(2):52-59.
[31] GUO L, VARGO C J, PAN Z X, et al. Big social data analytics in journalism and mass communication:comparing dictionary-based text analysis and unsupervised topic modeling[J]. Journalism and mass communication quarterly, 2016, 93(2):332-359.
[32] 钟智锦, 林淑金, 温仪, 等. 内地网民情绪记忆中的香港澳门回归[J]. 新闻与传播研究, 2017, 24(1):27-46, 126-127.
[33] HSU Y L, JANE W J. Bidirectional causality for word of mouth and the movie box office:an empirical investigation of panel data[J]. Journal of media economics, 2016, 29(3):139-152.
[34] LIU X, BURNS A C, HOU Y J. An investigation of brand-related user-generated content on twitter[J]. Journal of advertising, 2017, 46(2):236-247.
[35] BOLLEN J, MAO H N, ZENG X J. Twitter mood predicts the stock market[J]. Journal of computational science, 2011, 2(1):1-8.
[36] 周莉, 王子宇, 胡珀. 反腐议题中的网络情绪归因及其影响因素——基于32个案例微博评论的细粒度情感分析[J]. 新闻与传播研究, 2018, 25(12):42-56, 127.
[37] 张子俊. 重新认识传播渠道——以政府网络传播为对象[D]. 广州:暨南大学, 2018.
[38] PETROVIC S, OSBORNE M, MCCREADIE R, et al. Can twitter replace newswire for breaking news?[C]//Proceedings of the 7th international AAAI conference on Weblogs and social media. Boston:ICWSM, 2013:713-716.
[39] 毛艳. 基于创新扩散理论的微信信息传播机制研究[D]. 上海:上海工程技术大学, 2016.
[40] 沈阳, 冯杰. 两微一端重大事件信息扩散模式对比研究[J]. 现代传播(中国传媒大学学报), 2019, 41(2):63-67.
[41] 曾祥敏, 王孜. 健康传播中的虚假信息扩散机制与网络治理研究[J]. 现代传播(中国传媒大学学报), 2019, 41(6):34-40.
[42] 殳欣成. 复杂网络中真假信息传播机制研究[D]. 杭州:浙江工业大学, 2020.
[43] 李江. 大规模社会网络中的信息扩散建模与应用研究[D]. 北京:北京邮电大学, 2018.
[44] BENEVENUTOY F, RODRIGUESY T, CHA M, et al. Characterizing user behavior in online social networks[C]//Proceedings of the 9th ACM SIGCOMM conference on Internet measurement. New York:ACM, 2009:49-62.
[45] GUESS A, NAGLER J, TUCKER J. Less than you think:prevalence and predictors of fake news dissemination on Facebook[J]. Science advances, 2019, 5(1):eaau4586.
[46] LEUNG K W T, LEE D L. Deriving concept-based user profiles from search engine logs[J]. IEEE transactions on knowledge and data engineering, 2010, 22(7):969-982.
[47] CHEN Z H. Modeling research on micro-blog users[C]//Proceedings of the 2nd international conference on computer science and electronics engineering. Paris:Atlantis Press, 2013:1003-1006.
[48] WU L, GE Y, LIU Q, et al. Modeling users' preferences and social links in social networking services:a joint-evolving perspective[C]//Proceedings of the 30th AAAI conference on artificial intelligence. New York:ACM, 2016:279-286.
[49] WANG G, ZHANG X Y, TANG S L, et al. Unsupervised clickstream clustering for user behavior analysis[C]//Proceedings of the 2016 CHI conference on human factors in computing systems. New York:ACM, 2016:225-236.
[50] JUNG S G, AN J, KWAK H, et al. Persona generation from aggregated social media data[C]//Proceedings of the 2017 CHI conference extended abstracts on human factors in computing systems. New York:ACM, 2017:1748-1755.
[51] 王帅.突发公共卫生事件情境下在线健康社区用户画像与分群研究[J].情报科学, 2022, 40(6):98-107.
[52] 刘海鸥, 孙晶晶, 张亚明, 等. 在线社交活动中的用户画像及其信息传播行为研究[J]. 情报科学, 2018, 36(12):17-21.
[53] 张博, 李竹君. 微博信息传播效果研究综述[J]. 现代情报, 2017, 37(1):165-171.
[54] ZHANG L, PENG T Q. Breadth, depth, and speed:diffusion of advertising messages on microblogging sites[J]. Internet research electronic networking applications and policy, 2015, 25(3):453-470.
[55] 代丽, 樊粤湘. 微信公众号信息传播效果研究综述[J]. 数字与缩微影像, 2019(3):35-39.
[56] CERON A, CURINI L, IACUS S M, et al. Every tweet counts? how sentiment analysis of social media can improve our knowledge of citizens' political preferences with an application to Italy and France[J]. Departmental working papers, 2012, 16(2):340-358.
[57] 付树森. 企业微博对受众再传播意愿和品牌态度的影响研究[D]. 成都:西南财经大学, 2013.
[58] GILLY M C, GRAHAM J L, WOLFINBARGER M F, et al. A dyadic study of interpersonal information search[J]. Journal of the Academy of Marketing Science, 1998, 26(2):83-100.
[59] METZGER M J, FLANAGIN A J, MEDDERS R B. Social and heuristic approaches to credibility evaluation online[J]. Journal of communication, 2010, 60(3):413-439.
[60] CHA M. BENEVENUTO F, HADDADI H, et al. The world of connections and information flow in Twitter[J]. IEEE transactions on systems, man, and cybernetics-part a:systems and humans, 2012, 42(4):991-998.
[61] 董道力.计算传播视域下医生相关博文传播效果的影响因素和传播特征研究[D]. 广州:广东外语外贸大学, 2020.
[62] VITAK J, ZUBE P, SMOCK A, et al. It's complicated:facebook users' political participation in the 2008 election[J]. Cyberpsychology, behavior and social networking, 2011, 14(3):107-114.
[63] 尤达. 自决理论视域下的中国式"刷剧"——网络时代的受众心理与传播效果[J]. 编辑之友, 2021(12):65-73.
[64] 陈默. 媒体融合视域下主流媒体趣群化发展探索[J]. 青年记者, 2021(14):43-44.
[65] 匡文波, 武晓立. 基于微信公众号的健康传播效果评价指标体系研究[J]. 国际新闻界, 2019(1):153-176.
Outlines

/