INFORMATION RESEARCH

Research on the Characteristics of High-impact Patent Knowledge Diffusion Based on All Generation Citation Network

  • Kang Xudong ,
  • Jia Xiyue ,
  • Deng Lele ,
  • Yang Zhongkai
Expand
  • 1 Discipline Construction Office, Dalian University of Technology, Dalian 116024;
    2 Institute of Science of Science and S&T Management, Dalian University of Technology, Dalian 116024

Received date: 2022-05-17

  Revised date: 2022-09-18

  Online published: 2022-12-02

Abstract

[Purpose/Significance] Based on all generation citation network of patents, this paper classifies patents and analyzes the characteristics of knowledge extension of high-impact patents, which provides important reference for the understanding and evaluation of patent influence. [Method/Process] Take the patents of Sydney Brenner, a biologist, as an example, to study the patent all-generation citation network generated by its patents and forward citation patents, according to the two factors that play an important role in the diffusion of patents, the number and length of direct citation of patents, the patents could be divided into four categories, the patents with high citation counts and long citation paths were defined as high-impact patents, and the characteristics of knowledge diffusion of this kind of patents were analyzed. [Result/Conclusion] This paper finds that "key patents", "important patents" and "hidden high-impact patents" have a significant impact on the diffusion of patents in all generation citation network of patents, the domain change of patents in all generation citation networks also reflects the flow of knowledge, and the speed of knowledge diffusion can directly describe the characteristics of patent time series networks through numbers. Combined with the research results, we have a more specific understanding of the characteristics of high-impact patents, and put forward new ideas for the evaluation of high-impact patents.

Cite this article

Kang Xudong , Jia Xiyue , Deng Lele , Yang Zhongkai . Research on the Characteristics of High-impact Patent Knowledge Diffusion Based on All Generation Citation Network[J]. Library and Information Service, 2022 , 66(22) : 83 -94 . DOI: 10.13266/j.issn.0252-3116.2022.22.008

References

[1] 朱大明. 参考文献的主要作用与学术论文的创新性评审[J]. 编辑学报, 2004(2):91-92.
[2] CARPENTER M, NARIN F, WOOLF P. Citation rates to technologically important patents[J]. World patent information, 1981,3(4):160-163.
[3] HALL B, JAFFE A, TRAJTENBERG M. Market value and patent citations[J]. Rand journal of economics, 2005,36(1):16-38.
[4] TRAJTENBERG M. A penny for your quotes-patent citations and the value of innovations[J]. Rand journal of economics,1990,21(1):172-187.
[5] ALBERT M, AVERY D, NARIN F, et al. Direct validation of citation counts as indicators of industrially important patents[J]. Research policy, 1991,20(3):251-259.
[6] 杨祖国, 李文兰. 中国专利引文分析研究[J]. 情报科学, 2005(5):700-703.
[7] 郭婕婷, 肖国华. 专利分析方法研究[J]. 情报杂志, 2008(1):12-14.
[8] VON WARTBURG I, TEICHERT T, ROST K. Inventive progress measured by multi-stage patent citation analysis[J]. Research policy, 2005,34(10):1591-1607.
[9] ATALLAH G, RODRIGUEZ G. Indirect patent citations[J].Scientometrics,2006,67(3):437-465.
[10] 胡小君. 基于科技引用网络结构算法的科学计量新方法研究[D]. 杭州:浙江大学, 2012.
[11] 冯岭, 彭智勇, 刘斌, 等. 一种基于潜在引用网络的专利价值评估方法[J]. 计算机研究与发展, 2015,52(3):649-660.
[12] 邓乐乐. 基于全代引证的专利累积影响力测度与扩散特征研究[D]. 大连:大连理工大学, 2021.
[13] 康旭东, 邓乐乐, 王宇开, 等. 基于全代引证的专利累积影响力评价——一个诺奖得主专利的案例研究[J]. 情报学报, 2021,40(3):267-277.
[14] 杨中楷, 刘则渊, 梁永霞. 21世纪以来诺贝尔科学奖成果性质的技术科学趋向[J]. 科学学研究, 2016,34(1):4-12.
[15] 刘怡汝, 孙会军. 非专利引文在"科学——技术"关联研究中的应用和方法研究综述[J]. 农业图书情报, 2019,31(2):11-19.
[16] 杨中楷, 梁永霞, 刘则渊. USPTO中我国专利引用状况的统计分析[J]. 图书情报工作, 2009,53(2):42-46.
[17] 王亮, 张庆普, 于光, 等. 基于引文网络的知识扩散速度测度研究[J]. 情报学报, 2014,33(1):33-44.
[18] 张猛. 引文视角下国内图书情报学学术图书知识扩散研究[D]. 郑州:郑州大学, 2020.
[19] 岳增慧, 许海云. 学科引证网络知识扩散特征研究[J]. 情报学报, 2019,38(1):1-12.
[20] 邱均平, 瞿辉, 罗力. 基于期刊引证关系的学科知识扩散计量研究——以我国"图书馆、情报、档案学"为例[J]. 情报科学, 2012,30(4):481-485.
[21] 李江. 基于引文的知识扩散研究评述[J]. 情报资料工作, 2013(4):36-40.
[22] 张雪, 张志强. 专利知识吸收和扩散演化规律及影响研究[J]. 科研管理, 2022,43(6):160-169.
[23] 贵淑婷, 彭爱东. 基于专利引文网络的技术扩散速度研究[J]. 情报理论与实践, 2016,39(5):40-45.
[24] NAKAMURA H, SUZUKI S, HIRONORI T, et al. Citation lag analysis in supply chain research[J]. Scientometrics, 2011,87(2):221-232.
Outlines

/