THEORETICAL STUDY

The Conceptualization and Model Construction of Data Behaviors

  • Li Wenqi ,
  • Zhang Pengyi
Expand
  • Department of Information Management, Peking University, Beijing 100871

Received date: 2022-05-09

  Revised date: 2022-10-20

  Online published: 2022-12-16

Abstract

[Purpose/Significance] With the data-intensive paradigm shift, data has become the foundation of various scholarly activities. Meanwhile, data management and data sharing is gaining more attention from policy makers, research institutions, data service providers as well as researchers. Existing studies have covered topics on data related activities, researchers’ attitudes, and behaviors in research context. Yet the concept of data behavior is not explicitly defined and framed. [Method/Process] This paper drew on literatures to analyze the characteristics of research data, illustrate the necessity to propose the concept of data behavior, proposed the concept of data behavior with an individual perspective and develop the data behavior model and concept framework by referring to the theories of information behavior field. [Result/Conclusion] The data behavior model is developed to describe common patterns and process of data behaviors including data needs, data collection, data use, data management and data publishing, sharing, attribution and citation with an individual perspective. A conceptual framework of data behavior in research context encompassing various contextual elements is proposed to reveal potential factors that may influence researchers’ data behaviors, which include knowledge infrastructure, research contexts and researchers’ internal contexts. The model can provide theoretical basis and practical implications for empirical research of data behavior, data policy formulation, data infrastructure construction and data tool design.

Cite this article

Li Wenqi , Zhang Pengyi . The Conceptualization and Model Construction of Data Behaviors[J]. Library and Information Service, 2022 , 66(23) : 29 -40 . DOI: 10.13266/j.issn.0252-3116.2022.23.004

References

[1] GRAY J, LIU D T, NIETO-SANTISTEBAN M, et al. Scientific data management in the coming decade[J]. ACM sigmod record, 2005, 34(4): 34-41.
[2] SCHROEDER R. Big data: towards a more scientific social science and humanities?[M]. Oxford: Oxford University Press, 2014.
[3] HEY T, TREFETHEN A. E-Science and its implications[J]. Philosophical transactions: mathematical, physical and engineering sciences, 2003, 361(1809): 1809-1825.
[4] ATKINS D. Revolutionizing science and engineering through cyberinfrastructure: report of the national science foundation blue-ribbon advisory panel on cyberinfrastructure[R/OL]. [2022-09-03]. https://www.nsf.gov/cise/sci/reports/atkins.pdf.
[5] CRANE G, BABEU A, BAMMAN D. EScience and the humanities[J]. International journal on digital libraries, 2007, 7(1/2): 117-122.
[6] UNSWORTH J. Our cultural commonwealth: the report of the American Council of learned societies commission on cyberinfrastructure for the humanities and social sciences[R]. New York: ACLS, 2006.
[7] COX A M, TAM W W T. A critical analysis of lifecycle models of the research process and research data management[J]. Aslib journal of information management, 2018, 70(2): 142-157.
[8] HIGGINS S. The DCC curation lifecycle model[J]. International journal of digital curation, 2008, 3(1): 134-140.
[9] CHRISTOPHERSON L, MANDAL A, SCOTT E, et al. Toward a data lifecycle model for NSF large facilities[C]//Practice and experience in advanced research computing. New York: Association for Computing Machinery, 2020: 168-175.
[10] NOSEK B A, ALTER G, BANKS G C, et al. Promoting an open research culture[J]. Science, 2015, 348(6242): 1422-1425.
[11] 陈传夫, 李秋实. 数据开放获取使科学惠及更广——中国开放科学与科学数据开放获取的进展与前瞻[J]. 信息资源管理学报, 2020, 10(1): 4-13.
[12] NATIONAL ENDOWMENT FOR THE HUMANITIES. Data management plans for NEH office of digital humanities proposals and awards[EB/OL]. [2022-09-20]. https://www.neh.gov/sites/default/files/inline-files/Data%20Management%20Plans%2C%202019.pdf.
[13] NATIONAL SCIENCE FOUNDATION. NSF’s public access plan: today’s data, tomorrow’s discoveries[EB/OL]. [2022-09-20]. https://www.nsf.gov/pubs/2015/nsf15052/nsf15052.pdf.
[14] EUROPEAN COMMISSION. Open access - H2020 online manual[EB/OL]. [2022-09-20]. https://ec.europa.eu/research/participants/docs/h2020-funding-guide/cross-cutting-issues/open-access-data-management/open-access_en.htm.
[15] 王知津, 陈芊颖, 韩峰, 等. 我国开放数据研究进展与趋势(1996-2019年)[J]. 信息资源管理学报, 2020, 10(6): 47-59.
[16] HEY T, TREFETHEN A. The data deluge: an e-Science perspective[M]//BERMAN F, FOX G, HEY T. Grid computing: making the global infrastructure a reality. Chichester: John Wiley & Sons, 2003: 809-824.
[17] WHITMORE D A. Seeking context: archaeological practices surrounding the reuse of spatial information[D]. Los Angeles: University of California, 2016.
[18] ROLLAND B, LEE C P. Beyond trust and reliability: reusing data in collaborative cancer epidemiology research[C]//Proceedings of the 2013 conference on computer supported cooperative work. San Antonio: ACM Press, 2013: 435.
[19] 张潇月, 宋秀芳, 顾立平, 等. 我国科研人员科研数据重用行为影响因素实证研究——以生物学领域为例[J]. 情报学报, 2021, 40(8): 887-902.
[20] 严炜炜, 张敏. 科研协同中的数据共享与利用行为模式分析[J]. 情报理论与实践, 2018, 41(1): 55-60.
[21] WANG X, DUAN Q, LIANG M. Understanding the process of data reuse: an extensive review[J]. Journal of the Association for Information Science and Technology, 2021, 72(9): 1161-1182.
[22] ZIMMERMAN A. Not by metadata alone: the use of diverse forms of knowledge to locate data for reuse[J]. International journal on digital libraries, 2007, 7(1): 5-16.
[23] BORGMAN C L. Big data, little data, no data: scholarship in the networked world[M]. Cambridge: MIT Press, 2015.
[24] POOLE A H. The conceptual landscape of digital curation[J]. Journal of documentation, 2016, 72(5): 961-986.
[25] 国务院办公厅. 国务院办公厅关于印发科学数据管理办法的通知[EB/OL]. [2022-09-20]. http://www.gov.cn/zhengce/content/2018-04/02/content_5279272.htm.
[26] ECONOMIC AND SOCIAL RESEARCH COUNCIL (ESRC). ESRC research data policy[EB/OL]. [2022-09-20]. https://www.ukri.org/wp-content/uploads/2021/07/ESRC-200721-ResearchDataPolicy.pdf.
[27] BORGMAN C L, WALLIS J C, MAYERNIK M S. Who’s got the data? interdependencies in science and technology collaborations[J]. Computer supported cooperative work, 2012, 21(6): 485-523.
[28] RENEAR A H, SACCHI S, WICKETT K M. Definitions of dataset in the scientific and technical literature [C]//Proceedings of the American Society for Information Science and Technology. Pittsburgh: John Wiley & Sons, 2010: 1-4.
[29] SIMBERLOFF D, BARISH B C, DROEGEMEIER K K, et al. Long-lived digital data collections: enabling research and education in the 21st century[R]. Arlington: National Science Board, 2005.
[30] CHAO T C, CRAGIN M H, PALMER C L. Data practices and curation vocabulary: an empirically derived framework of scientific data practices and curatorial processes[J]. Journal of the association for information science and technology, 2015, 66(3): 616-633.
[31] FRY J, SPEZI V, PROBETS S, et al. Towards an understanding of the relationship between disciplinary research cultures and open access repository behaviors[J]. Journal of the Association for Information Science and Technology, 2016, 67(11): 2710-2724.
[32] PALMER C L, TEFFEAU L C, PIRMANN C M. Scholarly information practices in the online environment: themes from the literature and implications for library service development[M]. Dublin: OCLC Research, 2009.
[33] TRACE C B, KARADKAR U P. Information management in the humanities: scholarly processes, tools, and the construction of personal collections[J]. Journal of the Association for Information Science and Technology, 2017, 68(2): 491-507.
[34] BORGMAN C L. Data, disciplines, and scholarly publishing[J]. Learned publishing, 2008, 21(1): 29-38.
[35] PICKARD A J. Research methods in information[M]. 2nd ed. London: Facet Publishing, 2013.
[36] BORGMAN C L. The conundrum of sharing research data[J]. Journal of the American Society for Information Science and Technology, 2012, 63(6): 1059-1078.
[37] KILBRIDE W. Saving the bits: digital humanities forever?[M]. Chichester: John Wiley & Sons, 2015: 408-419.
[38] OWENS T. Defining data for humanists: text, artifact, information or evidence? journal of digital humanities[J/OL]. Journal of digital humanities, 2011, 1(1)[2022-09-20]. http://journalofdigitalhumanities.org/1-1/defining-data-for-humanists-by-trevor-owens/.
[39] BORGMAN C L. The digital future is now: a call to action for the humanities[J/OL]. Digital humanities quarterly, 2009, 3(4)[2022-09-20]. http://digitalhumanities.org/dhq/vol/3/4/000077/000077.html%20/000077.html.
[40] FLANDERS J, MUÑOZ T. An introduction to humanities data curation[EB/OL] [2022-09-20]. https://guide.dhcuration.org/contents/intro/.
[41] 夏翠娟. 面向人文研究的"数据基础设施"建设——试论图书馆学对数字人文的方法论贡献[J]. 中国图书馆学报, 2020, 46(3): 24-37.
[42] SCHÖCH C. Big? Smart? Clean? Messy? Data in the humanities[J]. Journal of digital humanities, 2013, 2(3): 2-13.
[43] PALMER C L, CRAGIN M H. Scholarship and disciplinary practices[J]. Annual review of information science and technology, 2008, 42(1): 163-212.
[44] WILSON E B. An introduction to scientific research[M]. New York: Dover Publications, 1990.
[45] ABDUL GHANI A N. Experimental research methods for students in built environment and engineering[J]. MATEC web of conferences, 2014, 10: 01001.
[46] SILVERTOWN J. A new dawn for citizen science[J]. Trends in ecology & evolution, 2009, 24(9): 467-471.
[47] MILES M B, HUBERMAN A M, SALDANA J. Qualitative data analysis: a methods sourcebook[M]. 3rd ed. Thousand Oaks: SAGE, 2014.
[48] ZHANG J, WANG W, XIA F, et al. Data-driven computational social science: a survey[J]. Big data research, 2020, 21: 100145.
[49] STONE S. Humanities scholars: information needs and uses[J]. Journal of documentation, 1982, 38(4): 292-313.
[50] BARRETT A. The information-seeking habits of graduate student researchers in the humanities1[J]. The journal of academic librarianship, 2005, 31(4): 324-331.
[51] DALLAS C. Humanistic research, information resources and electronic communication[M]// MEADOWS J, BOECKER H. Electronic communication and research in Europe. Luxembourg: European Commission, 1999: 209-239.
[52] VAN WIERST P, HOFSTEDE S, OORTWIJN Y, et al. Bolvis: visualization for text-based research in philosophy[C]//3rd Workshop on visualization for the digital humanities. Berlin: IEEE, 2018.
[53] MORETTI F. Graphs, maps, trees: abstract models for a literary history[M]. London: Verso, 2005.
[54] UNSWORTH J. Scholarly primitives: what methods do humanities researchers have in common, and how might our tools reflect this [C]//Symposium on humanities computing: formal methods, experimental practice. London: King’s College, 2000.
[55] WELLER T, MONROE-GULICK A. Understanding methodological and disciplinary differences in the data practices of academic researchers[J]. Library hi tech, 2014, 32(3): 467-482.
[56] THOEGERSEN J L. "Yeah, I guess that’s data": data practices and conceptions among humanities faculty[J]. Portal-libraries and the academy, 2018, 18(3): 491-504.
[57] GREGORY K, GROTH P, COUSIJN H, et al. Searching data: a review of observational data retrieval practices in selected disciplines[J]. Journal of the Association for Information Science and Technology, 2019, 70(5): 419-432.
[58] ZHU Y. Open-access policy and data-sharing practice in UK academia[J]. Journal of information science, 2020, 46(1): 41-52.
[59] 李晓, 曲建升, 靳军宝. 科研人员数据重用意愿、行为及满意度影响因素研究:一项元分析[J]. 图书馆杂志, 2022, 41(7): 128-138,113.
[69] REICHMANN S, KLEBEL T, HASANI-MAVRIQI I, et al. Between administration and research: understanding data management practices in an institutional context[J]. Journal of the Association for Information Science and Technology, 2021, 72(11): 1415-1431.
[61] HUANG Y, COX A M, SBAFFI L. Research data management policy and practice in Chinese university libraries[J]. Journal of the Association for Information Science and Technology, 2021, 72(4): 493-506.
[62] 唐燕花. 高校科研数据管理服务实践研究及建议[J]. 图书情报工作, 2016, 60(24): 130-138.
[63] 张潇月, 顾立平, 胡良霖. 国内外开放科研数据重用困境解决措施述评[J]. 图书馆, 2021(3): 80-89.
[64] UK DATA SERVICE. Research data management[EB/OL]. [2022-09-20]. https://ukdataservice.ac.uk/learning-hub/research-data-management/.
[65] BUDDENBOHM S, CRETIN N, DIJK E, et al. State of the art report on open access publishing of research data in the humanities[R/OL].[2022-09-03]. https://shs.hal.science/halshs-01357208.
[66] ELLIS D. A behavioural model for information retrieval system design[J]. Journal of information science, 1989, 15(4/5): 237-247.
[67] SAVOLAINEN R. Contributions to conceptual growth: the elaboration of Ellis’s model for information-seeking behavior[J]. Journal of the Association for Information science and Technology, 2017, 68(3): 594-608.
[68] CHAO T C, CRAGIN M H, PALMER C L. Data practices and curation vocabulary [EB/OL]. [2022-09-20]. http://hdl.handle.net/2142/44032.
[69] PETTIGREW K E, FIDEL R, BRUCE H. Conceptual frameworks in information behavior[J]. Annual review of information science and technology, 2001, 35:43-78.
[70] CASE D O, GIVEN L M. Looking for information: a survey of research on information seeking, needs, and behavior[M]. 4th ed. Bingley: Emerald, 2016.
[71] WILSON T D. Human information behavior[J]. Informing science, 2000, 3(2): 49-56.
[72] WILSON T D. Models in information behaviour research[J]. Journal of documentation, 1999, 55(3): 249-270.
[73] 胡媛, 艾文华, 胡子祎, 等. 高校科研人员数据需求管理影响因素框架研究[J]. 中国图书馆学报, 2019, 45(4): 104-121.
[74] 沈玖玖, 王志远, 戴家武, 等. 基于扎根理论的科研数据需求及影响因素分析[J]. 情报杂志, 2019, 38(4): 175-180,160.
[75] 胡卉, 吴鸣. 嵌入科研工作流与数据生命周期的数据素养能力研究[J]. 图书与情报, 2016(4): 125-137.
[76] 陈媛媛, 柯平. 高校图书馆科研数据服务研究综述[J]. 图书馆工作与研究, 2017(10): 17-23,30.
[77] 黄如花. 面向高质量发展的数据素养教育[J]. 图书馆建设, 2020(6): 26-29.
[78] 孟祥保, 常娥, 叶兰. 数据素养研究:源起、现状与展望[J]. 中国图书馆学报, 2016, 42(2): 109-126.
[79] 李晓辉. 图书馆科研数据管理与服务模式探讨[J]. 中国图书馆学报, 2011, 37(5): 46-52.
[80] 邱均平, 何文静. 科学数据共享与引用行为的相互作用关系研究[J]. 情报理论与实践, 2015, 38(10): 1-5.
[81] 毕达天, 曹冉, 杜小民. 人文社科科学数据共享意愿影响因素研究——基于同辈压力视角[J]. 情报资料工作, 2020, 41(4): 67-76.
[82] COURTRIGHT C. Context in information behavior research[J]. Annual review of information science and technology, 2007, 41(1): 273-306.
[83] FOSTER A. A nonlinear model of information-seeking behavior[J]. Journal of the American society for information science and technology, 2004, 55(3): 228-237.
[84] 王芳, 赵洪, 马嘉悦, 等. 数据科学视角下数据溯源研究与实践进展[J]. 中国图书馆学报, 2019, 45(5): 79-100.
[85] 张静蓓, 吕俊生, 田野. 国外数据共享行为影响因素研究综述[J]. 图书情报工作, 2014, 58(4): 136-142.
[86] GIVEN L M, WILLSON R. Information technology and the humanities scholar: documenting digital research practices[J]. Journal of the Association for Information Science and Technology, 2018, 69(6): 807-819.
[87] 秦小燕, 初景利. 面向我国科研人员的科学数据素养能力评价研究[J]. 情报理论与实践, 2020, 43(2): 21-27.
[88] JOO S, KIM S, KIM Y. An exploratory study of health scientists’ data reuse behaviors: examining attitudinal, social, and resource factors[J]. Aslib journal of information management, 2017, 69(4): 389-407.
[89] 顾立平, 张潇月. 开放科学环境下数据馆员的实践探析[J]. 图书情报知识, 2020(2): 60-74,112.
[90] 闫雪. 国外数据馆员的岗位职责与任职能力研究[J]. 情报科学, 2021, 39(1): 163-168.
[91] 顾立平. 数据治理——图书馆事业的发展机遇[J]. 中国图书馆学报, 2016, 42(5): 40-56.
Outlines

/