[Purpose/Significance] The risks derived from algorithmic recommendation services have a significant impact on people's daily lives. Clarifying the generation mechanism of algorithmic recommendation service risks and the behavior characteristics of users' response to algorithmic recommendation service risks will help to further improve the algorithmic recommendation service system.[Method/Process] Based on the grounded theory and semi-structured interview, this study conducted in-depth one-on-one interviews with 30 Internet users. Combined with the protective action decision model and coping behavior theory, this study explored the users' coping mechanism, influence factors and decision paths of algorithmic recommendation service risks.[Result/Conclusion] The study finds that risk attributes, communication channels, platform characteristics and users' behavior characteristics will have an impact on the spread of algorithm recommendation service risks. Based on the cognition of risk communication, users will form the perception of risk, stakeholder and protective behavior. Then, users will form attitudes and effect evaluation on the basis of perception, and make decisions and adopt different coping behaviors based on this. Ultimately, this study puts forward suggestions from the three levels of algorithm literacy, risk participation and individual learning to deal with the risk of algorithm recommendation service.
[1] 国家互联网信息办公室, 中华人民共和国工业和信息化部, 中华人民共和国公安部等.互联网信息服务算法推荐管理规定[EB/OL].[2022-03-30].http://www.cac.gov.cn/2022-01/04/c_1642894606364259.htm.
[2] 北京大学互联网研究发展中心, 360集团.中国大安全感知报告(2021)[EB/OL].[2022-06-18].https://baijiahao.baidu.com/s?id=1720394786275557436&wfr=spider&for=pc.
[3] 中国青年报社社会调查中心.你关注《算法推荐服务管理规定》了吗[EB/OL].[2022-06-16].https://baijiahao.baidu.com/s? id=1728616838467509782&wfr=spider&for=pc.
[4] 对外经济贸易大学数字经济与法律创新研究中心, 中国人民大学数字经济研究中心, 蚂蚁集团研究院.算法应用的用户感知调查与分析报告(2021)[EB/OL].[2022-06-18].https://mp.weixin.qq.com/s/-Ze5_fSkfqTbD4Lh8iBcyQ.
[5] ADAM B, VAN LOON J, BECK U.The risk society and beyond[M].London:Sage, 2000.
[6] 周葆华.算法推荐类APP的使用及其影响——基于全国受众调查的实证分析[J].新闻记者, 2019(12):27-37.
[7] 谢卫红, 樊炳东, 李忠顺, 等.电子商务环境下网络隐私顾虑维度的评估与测量[J].现代情报, 2019, 39(1):137-147.
[8] 李丹.算法歧视消费者:行为机制、损益界定与协同规制[J].上海财经大学学报, 2021, 23(2):17-33.
[9] 李明琨, 吴欢, 王伟.互联网企业大数据"杀熟" 的博弈行为机理与消费者应对策略[J].管理学刊, 2021, 34(2):55-64.
[10] SONG G, WANG Y.Mainstream value information push strategy on Chinese aggregation news platform:evolution, modelling and analysis[J].Sustainability, 2021, 13(19):11121.
[11] TÖRNBERG P.Echo chambers and viral misinformation:modeling fake news as complex contagion[J].Plos one, 2018, 13(9):e0203958.
[12] 陈梅梅, 周雪莲.认知负荷视角下个性化推荐系统选择过载效应研究[J].经济与管理, 2022, 36(2):77-84.
[13] 张帅, 刘运梅, 司湘云.信息疫情下网络虚假信息的传播特征及演化规律[J].情报理论与实践, 2021, 44(8):112-118.
[14] 熊开容, 刘超, 甘子美.刷抖音会上瘾吗?——短视频App用户沉浸式体验影响因素与形成机制[J].新闻记者, 2021(5):83-96.
[15] 匡亚林.老年群体数字融入障碍:影响要素、用户画像及政策回应[J].华中科技大学学报(社会科学版), 2022, 36(1):46-53.
[16] 张杨, 高德毅.算法推荐时代高校网络思想政治教育面临的挑战与应对[J].思想理论教育, 2021(7):91-96.
[17] 杨善奇, 刘岩.智能算法控制下的劳动过程研究[J].经济学家, 2021(12):31-40.
[18] 范梓腾, 宁晶, 魏娜.社交媒体用户的算法推荐内容接受度研究[J].电子政务, 2021(7):113-124.
[19] 陈琼, 宋士杰, 赵宇翔.突发公共卫生事件中信息过载对用户信息规避行为的影响:基于COVID-19信息疫情的实证研究[J].情报资料工作, 2020, 41(3):76-88.
[20] 翟姗姗, 胡畔, 吴璇, 等.基于用户信息行为的新媒体社交平台信息茧房现象及其破茧策略研究——以非遗短视频传播为例[J].情报科学, 2021, 39(10):118-125.
[21] 胡瑾.技术不确定性下算法推荐新闻的伦理风险及其法律规制[J].重庆大学学报(社会科学版), 2022, 28(3):230-241.
[22] 蒋武轩, 易明, 汪玲.融合用户兴趣漂移特征的个性化推荐研究[J].情报理论与实践, 2022, 45(1):38-45, 37.
[23] 花凌锋, 杨高明, 王修君.面向位置的多样性兴趣新闻推荐研究[J].数据分析与知识发现, 2018, 2(5):94-104.
[24] YOO S Y, JEONG O R.SNS based recommendation algorithm[C]//2013 international conference on information science and applications.International conference on information science and applications.Pattaya:IEEE, 2013:1-3.
[25] CHENGCHENG L, YU L, ZENG L.Research on news recommendation algorithm based on user behaviour[C]//YANG H.2nd international conference on mechanical, electronic and engineering technology.Xi'an:Clausius Scientific, 2019:196-203.
[26] 李亦飞, 梁巧稚, 薛可.智能算法推荐的治理困境及提升路径研究[J].新闻爱好者, 2021(11):41-44.
[27] 张吉豫.构建多元共治的算法治理体系[J].法律科学(西北政法大学学报), 2022, 40(1):115-123.
[28] 侯东德, 张丽萍.算法推荐意识形态风险的法律防范[J].重庆社会科学, 2021(8):77-90.
[29] 陈向明.扎根理论的思路和方法[J].教育研究与实验, 1999(4):58-63, 73.
[30] 贾旭东, 衡量.基于"扎根精神" 的中国本土管理理论构建范式初探[J].管理学报, 2016, 13(3):336-346.
[31] LINDELL M K, PERRY R W.The protective action decision model:theoretical modifications and additional evidence[J].Risk analysis:an international journal, 2012, 32(4):616-632.
[32] LAZARUS R S, FOLKMAN S.Stress, appraisal, and coping[M].New York:Springer, 1984.
[33] FOLKMAN S, LAZARUS R S.An analysis of coping in a middle-aged community sample[J].Journal of health and social behavior, 1980, 21(3):219-239.
[34] STRAUSS A, CORBIN J M.Grounded theory in practice[M].Thousand Oaks:Sage, 1997.
[35] 黄晓伟.后常规科学时代的风险传播:起点、规范与理性根基[J].新闻界, 2021(5):40-46.
[36] PANDIT N R.The creation of theory:a recent application of the grounded theory method[J].The qualitative report, 1996, 2(4):1-15.
[37] 李萧薇, 刘铁忠, 张湖波, 等.公众社区参与意愿对危化品危害利益相关者感知的影响[J].管理评论, 2020, 32(1):298-308.
[38] 王秀丽, 罗龙翔, 王兵.智能音箱的使用风险及其社会治理启示[J].北京航空航天大学学报(社会科学版), 2022, 35(1):102-108.
[39] 赵磊磊, 张黎, 王靖.智能时代教育数据伦理风险:典型表征与治理路径[J].中国远程教育, 2022(3):17-25, 77.
[40] 唐代兴.后世界风险社会的不可逆转型[J].深圳大学学报(人文社会科学版), 2021, 38(1):131-143.
[41] XU W, HAO Y, WU Q, et al.Community preparedness for emergency:a cross-sectional survey of residents in Heilongjiang of China.[J].BMJ open, 2015, 5(11):e008479.
[42] 朱红涛, 李姝熹.信息茧房研究综述[J].图书情报工作, 2021, 65(18):141-149.
[43] LEE P S N, SO C Y K, LEE F, et al.Social media and political partisanship-a subaltern public sphere's role in democracy[J].Telematics and informatics, 2018, 35(7):1949-1957.