KNOWLEDGE ORGANIZATION

A Research on the Recommendation of Scientific Evidence in Evidence-Based Policy Based on Knowledge Graph: An Example of the Policies Fighting on COVID-19

  • Ren Chao ,
  • Yang Menghui ,
  • Yang Guancan ,
  • Huo Chaoguang ,
  • Lu Xiaobin
Expand
  • 1 School of Information Resource Management, Renmin University of China, Beijing 100872;
    2 Key Laboratory of data Engineering and Knowledge Engineering, Renmin University of China, Beijing 100872

Received date: 2022-06-28

  Revised date: 2022-10-06

  Online published: 2023-02-09

Abstract

[Purpose/Significance] In order to provide scientific evidence recommendation to policy making, a knowledge graph-based research framework for scientific evidence recommendation in evidence-based policy is proposed, and a scientific evidence recommendation study is conducted using the policies fighting on COVID-19 as an example.[Method/Process] This paper proposed an effective research framework for scientific evidence recommendation in evidence-based policies, which mainly included two parts:evidence-based policy and scientific evidence knowledge graph construction, and scientific evidence recommendation in evidence-based policies. Meanwhile, taking the policies fighting on COVID-19 as an example, an evidence-based policy and scientific evidence knowledge graph containing 12,872,567 entities, 47 relationships and 61,548,684 triads was constructed. And it further used the inference ability of knowledge graph to provide scientific evidence recommendations for the policy formulation on fighting COVID-19.[Result/Conclusion] The result shows that the method has good recommendation accuracy, especially the HITS@10 of 0.182 588 in the TransE model, can effectively solve the problem of scientific evidence recommendation in the formulation of policies on fighting COVID-19, and provide a new scheme for evidence-based policy-making during the COVID-19 pandemic.

Cite this article

Ren Chao , Yang Menghui , Yang Guancan , Huo Chaoguang , Lu Xiaobin . A Research on the Recommendation of Scientific Evidence in Evidence-Based Policy Based on Knowledge Graph: An Example of the Policies Fighting on COVID-19[J]. Library and Information Service, 2023 , 67(2) : 108 -118 . DOI: 10.13266/j.issn.0252-3116.2023.02.011

References

[1] CAPLAN N.The two-communities theory and knowledge utilization[J].American behavioral scientist, 1979, 22(3):459-470.
[2] YIN Y, GAO J, JONES B F, et al.Coevolution of policy and science during the pandemic[J].Science, 2021, 371(6525):128-130.
[3] 梁继文, 杨建林, 王伟.政策对科研选题的影响——基于政策文本量化方法的研究[J].现代情报, 2021, 41(8):109-118.
[4] 薛澜.科学在公共决策中的作用——聚焦公共卫生事件中的风险研判机制[J].科学学研究, 2020(3):385-387.
[5] WILLIAMS G, DÍEZ S, FIGUERAS J, et al.Translating evidence into policy during the COVID-19 pandemic:bridging science and policy (and politics)[J].Eurohealth, 2020, 26(2):29-33.
[6] 齐晔, 杜迪佳, 董长贵, 等.新冠肺炎疫情早期科学研究对政府决策的影响[J].治理研究, 2020(2):21-31.
[7] 张继亮.循证政策:政策证据的类型、整合与嵌入[J].社会科学, 2019(11):39-47.
[8] 杨代福, 刘爽.新冠疫情应对决策中的研究证据使用:基于十个国家的定性比较分析[J].科学学研究, 2022, 40(2):278-287.
[9] 任超, 杨孟辉.隧道尽头的光芒:公共卫生政策计量分析研究[J/OL].图书馆论坛[2022-10-05].http://kns.cnki.net/kcms/detail/44.1306.g2.20220804.1704.004.html.
[10] Overton.Overton help center:advice and answers from the Overton team[EB/OL].[2022-10-02].http://help.overton.io/en/.
[11] ZHANG S, WANG Z, CHANG R, et al.COVID-19 containment:China provides important lessons for global response[J].Frontiers of medicine, 2020, 14(2):215-219.
[12] 中华人民共和国国务院新闻办公室.抗击新冠肺炎疫情的中国行动[N].人民日报, 2020-06-08(10).
[13] CHENG X, TANG L, ZHOU M, et al.Coevolution of COVID-19 research and China's policies[J].Health research policy and systems, 2021, 19(1):1-16.
[14] SNOW C P.Science and government[M].Cambridge:Harvard University Press, 2013.
[15] MEHRA M R, DESAI S, RUSCHITZKA F, et al.RETRACTED:hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19:a multinational registry analysis[J].The lancet, 2020, 395(10240):E102.
[16] LEI D, WEI C, JIAN D, et al.An interim review of lessons from the Novel Coronavirus (SARS-CoV-2) outbreak in China[J].Scientia Sinica Vitae, 2020, 50(3):247-257.
[17] CARVALHO C J, FULLER M P, QUAIDOO E A, et al.A review of COVID-19-related publications and lag times during the first six months of the year 2020[J].Western journal of emergency medicine, 2021, 22(4):958-962.
[18] 翟杰全.科学(研究)、公众理解与科学传播:基于新冠肺炎疫情的反思[J].科普研究, 2020, 15(2):13-18.
[19] 霍朝光, 钱毅, 祁天娇.基于开放公文的新冠肺炎政策知识图谱构建与分析[J].档案学通讯, 2021(2):53-62.
[20] 毛瑞彬, 朱菁, 李爱文, 等.基于自然语言处理的产业链知识图谱构建[J].情报学报, 2022, 41(3):287-299.
[21] LIU Y, ZHANG J, GE Z.Construction and application of knowledge graph of government policy based on deep neural network[C]//20205th international conference on information science, computer technology and transportation.Shenyang:IEEE, 2020:709-716.
[22] LI Z, DAI Y, LI X.Construction of sentimental knowledge graph of Chinese government policy comments[J].Knowledge management research & practice, 2022, 20(1):73-90.
[23] WANG P, LI Z, LI Z, et al.A government policy analysis platform based on knowledge graph[C]//20192nd international conference on artificial intelligence and big data.Orlando:IEEE, 2019:208-214.
[24] KANG Y, OU R, ZHANG Y, et al.PG-CODE:latent Dirichlet allocation embedded policy knowledge graph for government department coordination[J].Tsinghua science and technology, 2021, 27(4):680-691.
[25] 韩娜, 马海群, 刘兴丽.基于知识图谱的政策文本协同性推理研究[J].情报科学, 2021, 39(11):180-186.
[26] FLOCCO D, PALMER-TOY B, WANG R, et al.An analysis of COVID-19 knowledge graph construction and applications[C]//2021 IEEE international conference on big data.Orlando:IEEE, 2021:2631-2640.
[27] YANG Y, CAO Z, ZHAO P, et al.Constructing public health evidence knowledge graph for decision-making support from COVID-19 literature of modelling study[J].Journal of safety science and resilience, 2021, 2(3):146-156.
[28] BORDES A, USUNIER N, GARCIA-DURAN A, et al.Translating embeddings for modeling multi-relational data[C]//Neural information processing systems.Lake Tahoe:Curran, 2013.
[29] ZHEN W, ZHANG J, FENG J, et al.Knowledge graph embedding by translating on hyperplanes[C]//National conference on artificial intelligence.Québec City:AAAI, 2014.
[30] JI G, HE S, XU L, et al.Knowledge graph embedding via dynamic mapping matrix[C]//Meeting of the Association for Computational Linguistics & the international joint conference on natural language processing.Beijing:IJCNLP, 2015.
[31] KAZEMI S M, POOLE D.SimplE Embedding for link prediction in knowledge graphs[C]//Proceedings of the 32nd international conference on neural information processing systems.Montreal:NIPS, 2018:4289-4300.
[32] YANG B, YIH W T, HE X, et al.Embedding entities and relations for learning and inference in knowledge bases[J].arXiv preprint arXiv:1412.6575, 2014.
[33] TH TROUILLON O, WELBL J, et al.Complex embeddings for simple link prediction[C]//The 33rd international conference on machine learning.New York:JMLR.org, 2016.
[34] PRIEM J, PIWOWAR H, ORR R.OpenAlex:A fully-open index of scholarly works, authors, venues, institutions, and concepts[J].arXiv preprint arXiv:2205.01833, 2022.
[35] HAN X, CAO S, LV X, et al.Openke:an open toolkit for knowledge embedding[C]//Proceedings of the 2018 conference on empirical methods in natural language processing:system demonstrations.Brussels:Association for Computational Linguistics, 2018:139-144.
[36] GARFIELD E.Letters editor validation of citation analysis[J].Journal of the American Society for Information Science, 1997, 48(10):962-964.
Outlines

/