[1] 李辉, 曾文, 谭晓, 等.科技大数据资源平台建设研究[J].科技情报研究, 2022, 4(1):71-77.
[2] 《中国科技期刊发展蓝皮书(2021)》编写组.《中国科技期刊发展蓝皮书(2021)——开放科学环境下的学术出版专题》 内容简介[J].中国科技期刊研究, 2021, 32(12):1477-1480.
[3] GU X, BLACKMORE K L.Recent trends in academic journal growth[J].Scientometrics, 2016, 108(2):693-716
[4] JIN J, GENG Q, MOU H, et al.Author-Subject-Topic model for reviewer recommendation[J].Journal of information science, 2019, 45(4):554-570.
[5] WAHEED W, IMRAN M, RAZA B, et al.A hybrid approach towards research paper recommendation using centrality measures and author ranking[J].IEEE access, 2019, 7:33145-33158.
[6] HE M, PAN W, MING Z.BAR:Behavior-aware recommendation for sequential heterogeneous one-class collaborative filtering[J].Information sciences, 2022, 608(8):881-899.
[7] 李亚梅, 秦春秀, 马续补.基于科研人员情境化主题偏好的科技文献协同推荐研究[J].情报理论与实践, 2021, 44(12):180-189.
[8] YIN X, WANG H, YIN P, et al.A co-occurrence based approach of automatic keyword expansion using mass diffusion[J].Scientometrics, 2020, 124(3):1885-1905.
[9] 崔婉秋, 李昕, 孟祥福, 等.耦合关系分析下的Top-k关键字推荐方法[J].小型微型计算机系统, 2016, 37(8):1686-1691.
[10] 袁莎, 唐杰, 顾晓韬.开放互联网中的学者画像技术综述[J].计算机研究与发展, 2018, 55(9):1903-1919.
[11] LEE Y, WON H, SHIM J, et al.A hybrid collaborative filteringbased product recommender system using search keywords[J].Journal of intelligence and information systems, 2020, 26(1):151-166.
[12] 李伟卿, 池毛毛, 王伟军.面向用户长短期偏好调节的可解释个性化推荐方法研究[J].图书情报工作, 2021, 65(12):101-111.
[13] 聂卉, 邱以菲.融合用户兴趣及评论效用的评论信息推荐[J].图书情报工作, 2021, 65(10):68-78.
[14] 谢豪, 吴雪华, 陈茜, 等.融合多维特征的学术文献下载行为预测研究[J].图书情报工作, 2021, 65(12):112-121.
[15] 李媛媛, 李旭晖.结合本体与社会化标签的用户动态兴趣建模研究[J].情报学报, 2020, 39(4):436-449.
[16] ZANGERLE E, GASSLER W, SPECHT G.Using tag recommendations to homogenize folksonomies in microblogging environments[C]//Proceedings of international conference on social informatics.Berlin:Springer, 2011:113-126.
[17] HONG L, DAVISON B D.Empirical study of topic modeling in Twitter[C]//Proceedings of the first workshop on social media analytics.New York:ACM, 2010:80-88.
[18] 谭晓, 李辉, 许海云.基于多维数据知识内容和关联深层融合的知识发现研究综述[J].科技情报研究, 2021, 3(4):58-68.
[19] YUAN W, QU J, JIE L, et al.What to tag your microblog:hashtag recommendation based on topic analysis and collaborative filtering[C]//Proceedings of Asia-Pacific Web conference.Cham:Springer, 2014:610-618.
[20] 毕强, 刘健.基于领域本体的数字文献资源聚合及服务推荐方法研究[J].情报学报, 2017, 36(5):452-460.
[21] 尹志强.融合评分矩阵与评论文本的混合推荐算法的研究[D].北京:北京交通大学, 2021.
[22] 徐俊, 张政, 杜宣萱, 等.基于项目语义的协同过滤冷启动推荐算法研究[J].小型微型计算机系统, 2021, 42(11):2246-2251.
[23] NAJAFABADI M K, MAHRIN M N R.A systematic literature review on the state of research and practice of collaborative filtering technique and implicit feedback[J].Artificial intelligence review, 2016, 45(2):167-201.
[24] HAN H, HUANG M, ZHANG Y, et al.An extended-tag-induced matrix factorization technique for recommender systems[J].Information, 2018, 9(6):143.
[25] MORADI M, HAMIDZADEH J.Ensemble-based top-k recommender system considering incomplete data[J].Journal of AI and data mining, 2019, 7(3):393-402.
[26] CHEN J, DONG H, WANG X, et al.Bias and debias in recommender system:a survey and future directions[EB/OL].[2022-07-15].https://arxiv.org/abs/2010.03240.
[27] LEE D, KANG S, JU H, et al.Bootstrapping user and item representations for one-class collaborative filtering[C]//Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval.New York:ACM, 2021:317-326.
[28] HU Y, KOREN Y, VOLINSKY C.Collaborative filtering for implicit feedback datasets[C]//Proceedings of the eighth IEEE international conference on data mining.Italy:IEEE, 2008:263-272.
[29] PAN R, ZHOU Y, CAO B, et al.One-class collaborative filtering[C]//Proceedings of the eighth IEEE international conference on data mining.Italy:IEEE, 2008:502-511.
[30] HE X, ZHANG H, KAN M Y, et al.Fast matrix factorization for online recommendation with implicit feedback[C]//Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval.New York:ACM, 2016:549-558.
[31] CHENG X, FENG L, GUI Q.Collaborative filtering algorithm based on data mixing and filtering[J].International journal of performability engineering, 2019, 15(8):2267-2276.
[32] CREMONESI P, KOREN Y, TURRIN R.Performance of recommender algorithms on top-n recommendation tasks[C]//Proceedings of the fourth ACM conference on recommender systems.New York:ACM, 2010:39-46.
[33] CHAE D K, KANG J S, KIM S W, et al.Rating augmentation with generative adversarial networks towards accurate collaborative filtering[C]//Proceedings of World Wide Web conference.New York:ACM, 2019:2616-2622.
[34] ORTEGA F, BOBADILLA J, GUTIÉRREZ A, et al.Artificial intelligence scientific documentation dataset for recommender systems[J].IEEE access, 2018, 6:48543-48555.
[35] SARWAR B, KARYPIS G, KONSTAN J, et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web.New York:ACM, 2001:285-295.
[36] XIA W, HE L, GU J, et al.Effective collaborative filtering approaches based on missing data imputation[C]//Proceedings of the fifth international joint conference on INC, IMS and IDC.Seoul:IEEE, 2009:534-537.
[37] LEMIRE D, MACLACHLAN A.Slope one predictors for online rating-based collaborative filtering[C]//Proceedings of international conference on data mining, Society for Industrial and Applied Mathematics.Philadelphia:SIAM, 2005:471-475.
[38] SEDHAIN S, MENON A K, SANNER S, et al.Autorec:Autoencoders meet collaborative filtering[C]//Proceedings of the 24th international conference on World Wide Web.New York:ACM, 2015:111-112.
[39] KOREN Y.Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]//Proceedings of the 14th international conference on knowledge discovery and data mining.New York:ACM, 2008:426-434.
[40] HE X, LIAO L, ZHANG H, et al.Neural collaborative filtering[C]//Proceedings of the 26th international conference on World Wide Web.New York:ACM, 2017:173-182.
[41] LEE J, HWANG W S, PARC J, et al.$ l $-Injection:toward effective collaborative filtering using uninteresting items[J].IEEE transactions on knowledge and data engineering, 2017, 31(1):3-16.
[42] WU Y, DUBOIS C, ZHENG A X, et al.Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the ninth ACM international conference on Web search and data mining.New York:ACM, 2016:153-162.
[43] HE X, DENG K, WANG X, et al.Lightgcn:Simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR conference on research and development in information retrieval.New York:ACM, 2020:639-648.