[1] 鄂海红, 张文静, 肖思琪, 等.深度学习实体关系抽取研究综述[J].软件学报, 2019, 30(6):1793-1818.
[2] 赵妍妍, 秦兵, 车万翔, 等.中文事件抽取技术研究[J].中文信息学报, 2008(1):3-8.
[3] 姜吉发.自由文本的信息抽取模式获取的研究[D].北京:中国科学院研究生院, 2004.
[4] SURDEANU M, HARABAGIU S M, WILLIAMS J, et al.Using predicate-argument structures for information extraction[C]//Proceedings of the 41st annual meeting of the Association for Computational Linguistics.Sapporo:Tokyo Association for Computational Linguistics, 2003:8-15.
[5] SURDEANU M, HARABAGIU S M.Infrastructure for opendomain information extraction[C]//Proceedings of the second international conference on human language technology research.San Francisco:Morgan Kaufmann Publishers Inc, 2002:325-330.
[6] 李章超, 李忠凯, 何琳.《左传》战争事件抽取技术研究[J].图书情报工作, 2020, 64(7):20-29.
[7] 刘忠宝, 党建飞, 张志剑.《史记》历史事件自动抽取与事理图谱构建研究[J].图书情报工作, 2020, 64(11):116-124.
[8] 喻雪寒, 何琳, 徐健.基于RoBERTa-CRF的古文历史事件抽取方法研究[J].数据分析与知识发现, 2021, 5(7):26-35.
[9] ZHOU H, CHEN J, DONG G, et al.Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model[J].Mechanical systems and signal processing, 2016(72):65-79.
[10] 卢达威, 宋柔.基于最大熵模型的汉语标点句缺失话题自动识别初探[J].计算机工程与科学, 2015, 37(12):2282-2293.
[11] 李丽双, 黄德根, 毛婷婷, 等.基于支持向量机的中国人名的自动识别[J].计算机工程, 2006, 32(19):188-190.
[12] 邬伦, 刘磊, 李浩然, 等.基于条件随机场的中文地名识别方法[J].武汉大学学报:信息科学版, 2017, 42(2):150-156.
[13] AHN D.The stages of event extraction[C]//Proceedings of the workshop on annotating and reasoning about time and events.Sydney:Association for Computational Linguistics, 2006:1-8.
[14] 胡博磊, 贺瑞芳, 孙宏, 等.基于条件随机域的中文事件类型识别[J].模式识别与人工智能, 2012, 25(3):445-449.
[15] 王子牛, 姜猛, 高建瓴, 等.基于BERT的中文命名实体识别方法[J].计算机科学, 2019, 46(S2):138-142.
[16] 任智慧, 徐浩煜, 封松林, 等.基于LSTM网络的序列标注中文分词法[J].计算机应用研究, 2017, 34(5):1321-1324, 1341.
[17] 陈伟, 吴友政, 陈文亮, 等.基于BiLSTM-CRF的关键词自动抽取[J].计算机科学, 2018, 45(S1):91-96, 113.
[18] 唐慧慧, 王昊, 张紫玄, 等.基于汉字标注的中文历史事件名抽取研究[J].数据分析与知识发现, 2018, 2(7):89-100.
[19] 胡瑞娟, 周会娟, 刘海砚, 等.基于深度学习的篇章级事件抽取研究综述[J].计算机工程与应用, 2022, 58(24):47-60.:
[20] 唐语奇.基于深度学习的事件抽取技术研究与应用[D].成都:电子科技大学, 2022.
[21] 朱艺娜, 曹阳, 钟靖越, 等.事件抽取技术研究综述[J].计算机科学, 2022, 49(12):264-273.
[22] 柏瑶.基于文本的事件抽取关键技术研究[D].成都:电子科技大学, 2022.
[23] CHEN Y, XU L, LIU K, et al.Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing.Beijing:Association for Computational Linguistics, 2015:167-176.
[24] NGUYEN T H, CHO K, GRISHMAN R.Joint event extraction via recurrent neural networks[C]//Proceedings of the 2016 conference of the North American chapter of the Association for Computational Linguistics-human language technologies.San Diego:Association for Computational Linguistics, 2016:300-309.
[25] WANG R, ZHOU D, HE Y.Open event extraction from online text using a generative adversarial network[J/OL].arXiv preprint[2022-09-01].https://arxiv.org/abs/1908.09246.
[26] 石磊, 阮选敏, 魏瑞斌, 等.基于序列到序列模型的生成式文本摘要研究综述[J].情报学报, 2019, 38(10):1102-1116.
[27] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the conference on empirical methods in natural language processing.Doha:Association for Computational Linguistics, 2014:1724-1734.
[28] SUTSKEVER I, VINYALS O, LE Q V.Sequence to sequence learning with neural networks[J/OL].arXiv preprint[2022-09-01].https://arxiv.org/abs/1409.3215.
[29] RUSH A M, CHOPRA S, WESTON J.A neural attention model for abstractive sentence summarization[J/OL].arXiv preprint[2022-09-01].https://arxiv.org/abs/1509.00685.
[30] 陈颖, 朱韬.《史记》与《三国志》考辩[J].成都大学学报(社会科学版), 2007(6):50-52.
[31] 崔磊, 雷家宏.《三国志》裴松之注的史学价值[J].襄樊学院学报, 2011, 32(3):10-12, 31.
[32] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[J/OL].arXiv preprint[2022-09-01].https://arxiv.org/abs/1810.04805.
[33] RAFFEL C, SHAZEER N, ROBERTS A, et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].Journal of machine learning research, 2020, 21(140):1-67.
[34] XUE L, CONSTANT N, ROBERTS A, et al.mT5:a massively multilingual pre-trained text-to-text transformer[J/OL].arXiv preprint[2022-09-01].https://arxiv.org/abs/2010.11934.
[35] SHAZEER N.GLU variants improve transformer[J/OL].arXiv preprint[2022-09-01].https://arxiv.org/abs/2002.05202.
[36] DAUPHIN Y N, FAN A, AULI M, et al.Language modeling with gated convolutional networks[C]//Proceedings of the 34th international conference on machine learning.Sydney:JMLR.org, 2017:933-941.
[37] CHUNG H W, T FÉVRY, TSAI H, et al.Rethinking embedding coupling in pre-trained language models[J/OL].arXiv preprint[2022-09-01].https://arxiv.org/abs/2010.12821.
[38] JOSHI M, CHEN D, LIU Y, et al.SpanBERT:improving pretraining by representing and predicting spans[J].Transactions of the Association for Computational Linguistics, 2020(8):64-77.
[39] LIU Y, OTT M, GOYAL N, et al.RoBERTa:a robustly optimized BERT pretraining approach[J/OL].[2022-09-01].https://doi.org/10.48550/arXiv.1907.11692.
[40] WEI J, REN X, LI X, et al.NEZHA:neural contextualized representation for chineselanguage understanding[J/OL].arXiv preprint[2022-09-01].https://arxiv.org/abs/1909.00204.
[41] 徐继伟, 杨云.集成学习方法:研究综述[J].云南大学学报(自然科学版), 2018, 40(6):1082-1092.
[42] 周星, 丁立新, 万润泽, 等.分类器集成算法研究[J].武汉大学学报(理学版), 2015, 61(6):503-508.
[43] BREIMAN L.Bagging predictors[J].Machine learning, 1996, 24(2):123-140.
[44] FREUND Y, SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of computer and system sciences, 1997, 55(1):119-139.
[45] WOLPERT D H.Stacked generalization[J].Neural networks, 1992, 5(2):241-259.
[46] LIN C Y.Rouge:a package for automatic evaluation of summaries[C]//Text summarization branches out.Barcelona:Association for Computational Linguistics, 2004:74-81.