INFORMATION RESEARCH

Research on Adopter Classification in Scientific Innovation Diffusion from a Competitive Strategy Perspective

  • Zhai Yujia ,
  • Liu Tong ,
  • Gao Kaiyue ,
  • Zhang Jinwen
Expand
  • 1 School of Management, Tianjin Normal University, Tianjin 300897;
    2 School of Information Management, Wuhan University, Wuhan 430072

Received date: 2022-08-30

  Revised date: 2022-12-09

  Online published: 2023-03-04

Abstract

[Purpose/Significance] This study proposes a new approach to classify scientific innovation diffusion adopters from a competitive strategy perspective in marketing, which enriches the scientific innovation diffusion research and makes their potential to be fully utilized.[Method/Process] Using a combination of bibliometric and empirical network analysis methods, the paper took three steps of construct a co-citation network, network cognitive core identification and literature topic cluster identification to build an innovation diffusion network from the original literature's citation. And based on this, it adopted the competitive strategy in marketing to conduct a new classification of adopters of scientific innovation diffusion.[Result/Conclusion] The study defines and describes four types of roles played by literature in the diffusion process:‘leaders’, ‘followers’, ‘challengers’ and "gap fillers". The results show that leaders are positioned at the vanguard of the quantity distribution, and that fluctuations by leaders subsequently bring about fluctuations by challengers and followers. The leaders, as the high-impact literature in the diffusion of innovation, have a relatively concentrated research theme. The gap fillers are more inclined to explore some other subject areas and have a relatively dispersed research theme. In addition, when exploring the citation preferences of the four types of adopters, it is found that all four types had the highest average citations to leaders in the intercitation process, and the self-citation of leaders is the highest.

Cite this article

Zhai Yujia , Liu Tong , Gao Kaiyue , Zhang Jinwen . Research on Adopter Classification in Scientific Innovation Diffusion from a Competitive Strategy Perspective[J]. Library and Information Service, 2023 , 67(4) : 68 -79 . DOI: 10.13266/j.issn.0252-3116.2023.04.007

References

[1] ROGERS E, SINGHAL A, QUINLAN M.Diffusion of innovations[M]//An integrated approach to communication theory and research.New York:Routledge, 2014:432-448.
[2] 蔡霞, 宋哲, 耿修林.社会网络结构和采纳者创新性对创新扩散的影响——以小世界网络为例[J].软科学, 2019, 33(12):60-65.
[3] LUND B, OMAME I, TIJANI S, et al.Perceptions toward artificial intelligence among academic library employees and alignment with the diffusion of innovations' adopter categories[J].College & research libraries, 2020, 81(5):865-882.
[4] ZHAI Y, DING Y, ZHANG H.Innovation adoption:broadcasting versus virality[J].Journal of the Association for Information Science and Technology, 2021, 72(4):403-416.
[5] 岳增慧, 许海云.学科引证网络知识扩散特征研究[J].情报学报, 2019, 38(1):1-12.
[6] 侯剑华, 郑碧丽, 张洋.科学知识扩散研究:概念界定、理论基础与体系重构[J].现代情报, 2020, 40(9):117-126.
[7] 温伯格.知识的边界[M].胡泳, 高美, 译.太原:山西人民出版社, 2014:186.
[8] 陈柏彤, 张斌.科学知识扩散研究框架[J].图书情报工作, 2014, 58(15):48-57.
[9] 邱均平, 李小涛.基于引文网络挖掘和时序分析的知识扩散研究[J].情报理论与实践, 2014, 37(7):5-10.
[10] 宋歌.学术创新的扩散过程研究[J].中国图书馆学报, 2015, 41(1):62-75.
[11] 侯玥然, 闵超.基于引文网络的知识基因扩散研究[J].情报科学, 2021, 39(9):42-49, 66.
[12] 王静静, 叶鹰.国际数字人文研究中的跨学科知识扩散探析[J].大学图书馆学报, 2021, 39(2):45-51, 61.
[13] 赵蓉英, 魏绪秋.引证视角下的作者知识扩散规律探析[J].情报理论与实践, 2016, 39(8):12-17.
[14] GOEL S, ANDERSON A, HOFMAN J, et al.The structural virality of online diffusion[J].Management science, 2016, 62(1):180-196.
[15] ROGERS E.Diffusion of innovations[M].New York:Free Press, 1962.
[16] CHAI S, MENON A.Breakthrough recognition:bias against novelty and competition for attention[J].Research policy, 2019, 48(3):733-747.
[17] TUCKER T.What influences young adults' decision to adopt new technology[J].The elon journal of undergraduate research in communications, 2011, 2(2):147-157.
[18] ANDERSON T, VARNHAGEN S, CAMPBELL K.Faculty adoption of teaching and learning technologies:contrasting earlier adopters and mainstream faculty[J].The Canadian journal of higher education, 1998, 28(2):71-98.
[19] IIVARI J, JANSON M.Analysis of electronic commerce adopter categories in retailing:the case of automobile dealerships[J].Journal of organizational computing and electronic commerce, 2003, 13(1):25-55.
[20] K A U F F M A N R, T E C H ATA S S A N A S O O N TO R N A.Understanding early diffusion of digital wireless phones[J].Telecommunications policy, 2009, 33(8):432-450.
[21] GOWDA C, DOLLI S, DURGA P, et al.Pooled innovativeness and learning-pattern based adopter categorization[J].Rural extension and innovation systems journal, 2018, 14(1):41-51.
[22] VAN E, JAGER W, LEEFLANG P.Opinion leaders' role in innovation diffusion:a simulation study[J].Journal of product innovation management, 2011, 28(2):187-203.
[23] DOWNES L, NUNES P.Big bang disruption[J].Harvard business review, 2013, 91(3):44-56.
[24] BIANCHI M, BENEDETTO A, FRANZO S, et al.Selecting early adopters to foster the diffusion of innovations in industrial markets:evidence from a multiple case study[J].European journal of innovation management, 2017, 20(4):620-644.
[25] JAHANMIR S, LAGES L.The late-adopter scale:a measure of late adopters of technological innovations[J].Journal of business research, 2016, 69(5):1701-1706.
[26] BAIG M, SHUIB L, YADEGARIDEHKORDI E.Big data adoption:state of the art and research challenges[J].Information processing & management, 2019, 56(6):102095.
[27] TUFAIL E, ZALAN T, DHAOU S.A framework of blockchain technology adoption:an investigation of challenges and expected value[J].Information & management, 2021, 58(3):103444.
[28] BLEI D, Ng A, JORDAN M.Latent dirichlet allocation[J].Journal of machine learning research, 2003, 3(1):993-1022.
[29] HERFELD C, DOEHNE M.The diffusion of scientific innovations:a role typology[J].Studies in history and philosophy of science part a, 2019, 77:64-80.
[30] 杨青, 郑璐, 邹星琪.基于风险传播网络和K-shell方法的复杂研发项目风险评价[J].管理评论, 2021, 33(9):119-127.
[31] NEWMAN M, GIRVAN M.Finding and evaluating community structure in networks[J].Physical review e, 2004, 69(2):026113.
[32] NEWMAN M.Fast algorithm for detecting community structure in networks[J].Physical review e, 2004, 69(6):066133.
[33] KOTLER P.Competitive strategies for new product marketing over the life cycle[J].Management science, 1965, 12(4):B-104-B-119.
[34] VAN D.How the publish-or-perish principle divides a science:the case of economists[J].Scientometrics, 2021, 126(2):1675-1694.
[35] VEUGELERS R, WANG J.Scientific novelty and technological impact[J].Research policy, 2019, 48(6):1362-1372.
[36] SUN Y, LIVAN G, MA A, et al.Interdisciplinary researchers attain better long-term funding performance[J].Communications physics, 2021, 4(1):1-7.
[37] KOTLER P, SINGH R.Marketing warfare in the 1980s[J].The journal of business strategy, 1981, 1(3):30-41.
[38] AMJAD T, DING Y, XU J, et al.Standing on the shoulders of giants[J].Journal of informetrics, 2017, 11(1):307-323.
Outlines

/