A Review on Technical Methods for Knowledge Evolution Analysis

  • Wang Qian ,
  • Qian Li ,
  • Liu Xiwen
Expand
  • 1 National Science Library, China Academy of Sciences, Beijing 100190;
    2 Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190;
    3 Key Laboratory of New Publishing and Knowledge Services for Scholarly Journals, Beijing 100190

Received date: 2022-08-03

  Revised date: 2022-10-20

  Online published: 2023-04-15

Abstract

[Purpose/Significance] With the rapid development of frontier science, how to grasp the evolution of relevant knowledge has become an important and challenging task. This paper aims to summarize various technical methods of knowledge evolution analysis, analyze the problems and challenges of existing technical routes, and provide ideas for further relevant research.[Method/Process] The connotation and theoretical basis of knowledge evolution analysis was clarified. With bibliometric and content analysis methods, VOSviewer was used to carry out thematic analysis of related research at home and abroad. Based on it, a method map of evolutionary analysis techniques was constructed.[Result/Conclusion] From the perspective of knowledge structure, 7 technical methods are classified into citation network main path analysis, citation network clustering, co-word network path mining, co-word network clustering, evolution mechanism model, topic model, and deep learning method. And summarize the characteristics and shortcomings of different technical methods. By integrating fine-grained knowledge, rich knowledge relationships and semantic analysis technology, a big data-driven knowledge evolution analysis framework based on research design fingerprints is proposed.

Cite this article

Wang Qian , Qian Li , Liu Xiwen . A Review on Technical Methods for Knowledge Evolution Analysis[J]. Library and Information Service, 2023 , 67(7) : 121 -134 . DOI: 10.13266/j.issn.0252-3116.2023.07.011

References

[1] FORTUNATO S, BERGSTROM C T, BRNER K, et al. Science of science[J]. Science, 2018, 359(6379):eaao0185.
[2] PRICE D D S. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science, 1976, 27(5):292-306.
[3] 马费成, 陈潇俊, 刘向. 基于科学知识图谱分析的知识演化研究——以生物医学为例[J]. 情报科学, 2012, 30(1):1-7, 15.
[4] 杨建林, 郑昌兴. 文献检索服务中的知识脉络图分析[C]//第一届科学计量学与信息计量学研讨会论文集. 西安:中国科学学与科技政策研究会, 2013:251-255.
[5] 刘向, 马费成. 科学知识网络的演化与动力——基于科学引证网络的分析[J]. 管理科学学报, 2012, 15(1):87-94.
[6] 赖茂生. 信息资源管理教程[M]. 北京:清华大学出版社,2006:1-10.
[7] 王忠义, 涂悦, 夏立新. 科技文献资源中学科知识漂移研究[J]. 情报理论与实践, 2021, 44(6):118-124.
[8] GEORGE P. What is a knowledge ecosystem[EB/OL].[2022- 04-13]. http://www.co-i-l.com/coil/knowledge-garden/kd/kes.shtml.
[9] 陈茫, 张庆普, 陈洁. " 知识生态系统" 带来图书馆知识创新的新机遇[J]. 图书馆, 2016(5):15-20.
[10] BRAY D. Knowledge ecosystems[C]//FIP international working conference on organizational dynamics of technology-based innovation. Boston:Springer, 2007:457-462.
[11] 储节旺, 李佳轩. 知识生态系统中知识演化及智慧创生研究——以知乎社区为例[J]. 情报理论与实践, 2022, 45(9):51-58.
[12] BROOKES B C. The foundations of information science. part I. philosophical aspects[J]. Journal of information science, 1980, 2(3/4):125-133.
[13] 王琳. 布鲁克斯情报学基本方程式的思想脉络探析[J]. 情报探索, 2014(11):16-19.
[14] MEADOW C T, YUAN W. Measuring the impact of information:defining the concepts[J]. Information processing & management, 1997, 33(6):697-714.
[15] BROOKES B C. The foundations of information science:part III. quantitative aspects:objective maps and subjective landscapes[J]. Journal of information science, 1980, 2(6):269-275.
[16] 于海涛, 高一波, 杨一平. 基于知识树的领域知识组织和应用[J]. 计算机应用研究, 2008, 25(11):3246-3248.
[17] 谭红叶, 要一璐, 梁颖红. 基于知识脉络的科技论文推荐[J]. 山东大学学报:理学版, 2016, 51(5):94-101.
[18] 秦春秀, 赵捧未, 李东, 等. 对等网环境下基于树模型的对等节点的知识地图构建研究[J]. 情报学报, 2013, 32(7):686-696.
[19] 石湘, 刘萍. 基于知识元语义描述模型的领域知识抽取与表示研究——以信息检索领域为例[J]. 数据分析与知识发现, 2020, 5(4):123-133.
[20] 刘非凡, 张爽, 罗双玲, 等. 基于深度图神经网络方法的领域知识结构探测[J]. 情报学报, 2021, 40(11):1209-1220.
[21] 逯万辉, 谭宗颖. 基于深度学习的期刊分群与科学知识结构测度方法研究[J]. 情报学报, 2020, 39(1):38-46.
[22] BELVAUX G, WOLSEY L A. Bc-prod:a specialized branchand-cut system for lot-sizing problems[J]. Management science, 2000, 46(5):724-738.
[23] 刘向, 马费成, 陈潇俊, 等. 知识网络的结构与演化——概念与理论进展[J]. 情报科学, 2011, 29(6):801-809.
[24] 焦晓静, 王兰成. 知识图谱的概念辨析与学科定位研究[J]. 图书情报工作, 2015, 59(15):5-11.
[25] SCHOENBACH U H, GARFIELD E. Citation indexes for science[J]. Science, 1956, 123(3185):61-62.
[26] 加菲尔德. 引文索引法的理论及应用[M]. 北京:北京图书馆出版社, 2004.
[27] HUMMON N P, DEREIAN P. Connectivity in a citation network[J]. Social network, 1989, 11(1):39-63.
[28] 韩毅, 周畅, 刘佳. 以主路径为种子文献的领域演化脉络及凝聚子群识别[J]. 图书情报工作, 2013, 57(3):22-26.
[29] 章小童, 阮建海. 引文网络主路径分析法演化脉络及研究现状的文献计量分析[J]. 情报资料工作, 2016, 37(5):61-66.
[30] LIANG H, WANG J J, XUE Y, et al. IT outsourcing research from 1992 to 2013:a literature review based on main path analysis[J]. Information & management, 2016, 53(2):227-251.
[31] 肖雪, 陈云伟, 邓勇. 引文网络的社团划分研究进展综述[J]. 情报杂志, 2016, 35(4):125-130.
[32] SMALL H. The relationship of information science to the social sciences:a co-citation analysis[J]. Information processing & management, 1981, 17(1):39-50.
[33] CHEN C, IBEKWE-SANJUAN F, HOU J. The structure and dynamics of cocitation clusters:a multiple-perspective cocitation analysis[J]. Journal of the American Society for Information Science and Technology, 2010, 61(7):1386-1409.
[34] MORRIS S A, YEN G, WU Z, et al. Time line visualization of research fronts[J]. Journal of the Association for Information Science & Technology, 2014, 54(5):413-422.
[35] NI C, SUGIMOTO C R, CRONIN B. Visualizing and comparing four facets of scholarly communication:producers, artifacts, concepts, and gatekeepers[J]. Scientometrics, 2013, 94(3):1161- 1173.
[36] ROSSETT O D, BERNARDES R C, BORINI F M, et al. Structure and evolution of innovation research in the last 60 years:review and future trends in the field of business through the citations and co-citations analysis[J]. Scientometrics, 2018, 115(3):1329-1363.
[37] GONZáLEZ-TERUEL A, GONZáLEZ-ALCAIDE G, BARRIOS M, et al. Mapping recent information behavior research:an analysis of co-authorship and co-citation networks[J]. Scientometrics, 2015, 103(2):687-705.
[38] RéALE D, KHELFAOUI M, MONTIGLIO P O, et al. Mapping the dynamics of research networks in ecology and evolution using co-citation analysis (1975-2014)[J]. Scientometrics, 2020, 122(3):1361-1385.
[39] KERNIGHAN B W, LIN S. An efficient heuristic procedure for partitioning graphs[J]. The bell system technical journal, 1970, 49(2):291-307.
[40] GIRVAN M, NEWMAN M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826.
[41] GROVER A, LESKOVEC J. Node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. San Francisco:Association for Computing Machinery, 2016:855-864.
[42] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[Preprint]. arXiv preprint arXiv:1609.02907, 2016.
[43] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[Preprint]. arXiv preprint arXiv:1710.10903, 2017.
[44] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st international conference on neural information processing systems. New York:Curran Associates, 2017:1025-1035.
[45] 滕广青, 贺德方, 彭洁, 等. 基于网络中心性的领域知识动态演化研究[J]. 图书情报工作, 2016, 60(14):128-134, 141.
[46] ZHANG Y, ZHANG G, CHEN H, et al. Topic analysis and forecasting for science, technology and innovation:methodology with a case study focusing on big data research[J]. Technological forecasting and social change, 2016, 105:179-191.
[47] ZHANG Y, ZHANG G, ZHU D, et al. Scientific evolutionary pathways:identifying and visualizing relationships for scientific topics[J]. Journal of the Association for Information Science and Technology, 2017, 68(8):1925-1939.
[48] 祝娜, 王芳. 基于主题关联的知识演化路径识别研究——以3D打印领域为例[J]. 图书情报工作, 2016, 60(5):101-109.
[49] 许鑫, 陈路遥, 杨佳颖. 数字人文研究领域的知识网络演化——基于题录信息和引文上下文的关键词共词分析[J]. 情报学报, 2019, 38(3):322-334.
[50] 王林, 薛玮, 潘陈益, 等. 虚拟现实研究热点及演化趋势分析[J]. 信息资源管理学报, 2017, 7(3):34-44.
[51] ZHANG X, XIE Q, SONG C, et al. Mining the evolutionary process of knowledge through multiple relationships between keywords[J]. Scientometrics, 2022, 127(4):2023-2053.
[52] JENSEN S, YU Y, LIU H B, et al. Query-centric scientific topic evolution extraction[J]. Proceedings of the Association for Information Science and Technology, 2015, 52(1):1-4.
[53] 陈果, 彭家彬, 肖璐. 基于"问题-方法"知识抽取的科研领域知识演化研究:以人工智能为例[J]. 情报理论与实践, 2022, 45(6):32-38.
[54] LIU Z, LAI Y C, YE N, et al. Connectivity distribution and attack tolerance of general networks with both preferential and random attachments[J]. Physics letters a, 2002, 303(5-6):337-344.
[55] 陈果, 赵以昕. 多因素驱动下的领域知识网络演化模型:跟风、守旧与创新[J]. 情报学报, 2020, 39(1):1-11.
[56] 张斌, 李亚婷. 知识网络演化模型研究述评[J]. 中国图书馆学报, 2016, 42(5):85-101.
[57] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[58] LEE H, KANG P. Identifying core topics in technology and innovation management studies:a topic model approach[J]. The journal of technology transfer, 2018, 43(5):1291-1317.
[59] 李跃艳, 王昊, 邓三鸿, 等. 近十年信息检索领域的研究热点与演化趋势研究——基于SIGIR会议论文的分析[J]. 数据分析与知识发现, 2021, 5(4):13-24.
[60] ZHU M, ZHANG X, WANG H. A LDA based model for topic evolution:evidence from information science journals[C]//Proceedings of the 2016 international conference on modeling, simulation and optimization technologies and applications. Xiamen:Atlantis Press, 2016:49-54.
[61] BLEI D M, LAFFERTY J D. Dynamic topic models[C]//Proceedings of the 23rd international conference on machine learning. Pennsylvania:Association for Computing Machinery. Xiamen:Atlantis Press, 2006:113-120.
[62] 齐亚双, 祝娜, 翟羽佳. 基于DTM的国内外情报学研究主题热度演化对比研究[J]. 图书情报工作, 2016, 60(16):99-109.
[63] MIMNO D, MCCALLUM A. Topic models conditioned on arbitrary features with Dirichlet-multinomial regression[C]//Proceedings of the twenty-fourth conference on uncertainty in artificial intelligence. Helsinki:AUAI Press, 2008:411-418.
[64] YAO R, YE Y, ZHANG J, et al. AI marker-based large-scale AI literature mining[Preprint]. arXiv preprint arXiv:2011.00518, 2020.
[65] YIN D, TAM W L, DING M, et al. MRT:tracing the evolution of scientific publications[J]. IEEE transactions on knowledge and data engineering, 2021, 35(1):711-724.
[66] ZHA H, CHEN W, LI K, et al. Mining algorithm roadmap in scientific publications[C]//Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. New York:Association for Computing Machinery, 2019:1083-1092.
[67] 马朋坤. 基于大规模图书的知识脉络构建及应用[D]. 杭州:浙江大学, 2018.
[68] KONDO T, NANBA H, TAKEZAWA T, et al. Technical trend analysis by analyzing research papers' titles[M]. Human language technology. challenges for computer science and linguistics. Berlin:Springer, 2011:512-521.
[69] 钱力, 张晓林, 王茜. 基于科技文献的研究设计指纹描述框架研究[J]. 大学图书馆学报, 2015, 33(1):14-20.
[70] 刘自强, 岳丽欣, 许海云, 等. 时序共词网络构建及其动态可视化研究[J]. 情报学报, 2020, 39(2):186-198.
[71] JOHNSON R, WATKINSON A, MABE M. The stm report an overview of scientific and scholarly publishing[EB/OL].[2022-04-13]. https://www.stm-assoc.org/2018_10_04_STM_Report_2018.pdf.
Outlines

/